
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B2 Servers Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M362-DS-006R0

May 26, 2000
By

Computer Sciences Corporation and PB Farradyne Inc.

R1B2 Servers Detailed Design Rev. 0 i 04/17/01

Revision Description Pages Affected Date

0 Initial Release All May 26, 2000

R1B2 Servers Detailed Design Rev. 0 ii 04/17/01

Table of Contents

1 Introduction ...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Key Design Concepts..2-1
2.1 Access Control ..2-1

2.2 Operations Logging..2-2

2.3 Service Application Framework ...2-2

2.4 Service Application Maintenance ...2-3

2.5 Event Channel Fault Tolerance ..2-3

2.6 Object Publication..2-4

2.7 Pass By Value..2-4

2.8 Database Access..2-2

2.9 Field Communications ...2-2

2.10 Error Processing...2-2

2.11 Recorded Voice Handling..2-3

2.12 Packaging ..2-4

3 Package Designs...3-1
3.1 CHART2Service ...3-1

3.1.1 Classes..3-1

3.1.2 Sequence Diagrams ..3-3

3.2 CommLogModule...3-5

3.2.1 Classes..3-5

3.2.2 Sequence Diagrams ..3-9

R1B2 Servers Detailed Design Rev. 0 iii 04/17/01

3.3 CORBAUtilities ..3-15

3.3.1 Classes..3-15

3.4 DeviceUtility..3-17

3.4.1 Classes..3-17

3.4.2 Sequence Diagrams ..3-21

3.5 DictionaryModule...3-29

3.5.1 Classes..3-29

3.5.2 Sequence Diagrams ..3-32

3.6 DMSControlModule...3-42

3.6.1 Classes..3-42

3.6.2 Sequence Diagrams ..3-55

3.7 DMSUtility ..3-92

3.7.1 Classes..3-92

3.8 HARControlModule...3-96

3.8.1 Classes..3-96

3.8.2 Sequence Diagrams ..3-104

3.9 HARUtility ..3-133

3.9.1 Classes..3-133

3.9.2 Sequence Diagrams ..3-138

3.10 JavaClasses ...3-140

3.10.1 Classes ..3-140

3.11 MessageLibraryModule...3-144

3.11.1 Classes ..3-144

3.11.2 Sequence Diagrams ..3-148

3.12 PlanModule ...3-163

3.12.1 Classes ..3-163

3.12.2 Sequence Diagrams ..3-166

3.13 ResourcesModule ...3-178

3.13.1 Classes ..3-178

3.13.2 Sequence Diagrams ..3-181

3.14 SHAZAMControl ...3-193

R1B2 Servers Detailed Design Rev. 0 iv 04/17/01

3.14.1 Classes ..3-193

3.14.2 Sequence Diagrams ..3-199

3.15 SHAZAMUtility ...3-210

3.15.1 Classes ..3-210

3.16 SystemInterfaces...3-211

3.16.1 Classes ..3-211

3.17 TrafficEventModule...3-263

3.17.1 Classes ..3-263

3.17.2 Sequence Diagrams ..3-272

3.18 TTSControl ...3-292

3.18.1 Classes ..3-292

3.18.2 Sequence Diagrams ..3-297

3.19 UserManagementModule ..3-308

3.19.1 Classes ..3-308

3.19.2 Sequence Diagrams ..3-311

3.20 Utility ...3-328

3.20.1 Classes ..3-328

3.20.2 Sequence Diagrams ..3-337

Acronyms
References
Appendix A – Functional Rights
Appendix B - Glossary

R1B2 Servers Detailed Design Rev. 0 v 04/17/01

Table of Figures

Figure 1. CHART2ServiceClasses (Class Diagram)..3-1

Figure 2. CHART2Service:Shutdown (Sequence Diagram)..3-3

Figure 3. CHART2Service:Startup (Sequence Diagram) ..3-4

Figure 4. CommLogModuleClassDiagram (Class Diagram)...3-5

Figure 5. CommLogModule:addEntries (Sequence Diagram) ..3-9

Figure 6. CommLogModule:destroy (Sequence Diagram)..3-10

Figure 7. CommLogModule:getEntries (Sequence Diagram) ...3-11

Figure 8 CommLogModule:initialize (Sequence Diagram)...3-12

Figure 9. CommLogModule:runIteratorCleanup (Sequence Diagram)3-13

Figure 10 CommLogModule:shutdown (Sequence Diagram) ...3-14

Figure 11. CORBAClasses (Class Diagram) ...3-15

Figure 12. DeviceUtility (Class Diagram) ...3-18

Figure 13. ArbQueueProcessing:addEntry (Sequence Diagram)...3-21

Figure 14. ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)...............................3-22

Figure 15. ArbQueueProcessing:evaluateQueue (Sequence Diagram)......................................3-23

Figure 16. ArbQueueProcessing:interrupt (Sequence Diagram)..3-24

Figure 17. ArbQueueProcessing:removeEntry (Sequence Diagram) ..3-25

Figure 18. ArbQueueProcessing:requestFailed (Sequence Diagram)..3-26

Figure 19. ArbQueueProcessing:requestSucceeded (Sequence Diagram).................................3-27

Figure 20. ArbQueueProcessing:resume (Sequence Diagram)..3-28

Figure 21. DictionaryModClassDiagram (Class Diagram)..3-29

Figure 22. DictionaryModule:initialize (Sequence Diagram)..3-32

Figure 23. DictionaryModule:shutdown (Sequence Diagram) ..3-33

Figure 24. DictionaryImpl:addApprovedWordList (Sequence Diagram)..................................3-34

Figure 25. DictionaryImpl:addBannedWordList (Sequence Diagram)3-35

Figure 26. DictionaryImpl:checkForBannedWords (Sequence Diagram).................................3-36

Figure 27. DictionaryImpl:getApprovedWords (Sequence Diagram)3-37

Figure 28. DictionaryImpl:getBannedWords (Sequence Diagram)...3-38

Figure 29. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram).....................3-39

R1B2 Servers Detailed Design Rev. 0 vi 04/17/01

Figure 30. DictionaryImpl:removeApprovedWordList (Sequence Diagram)3-40

Figure 31. DictionaryImpl:removeBannedWordList (Sequence Diagram)3-41

Figure 32. DMSControlClassDiagram (Class Diagram)..3-42

Figure 33. QueueableCommandClassDiagram (Class Diagram)...3-52

Figure 34. DMSControlModule:ActivateHARNotice (Sequence Diagram)3-55

Figure 35. DMSControlModule:BlankFromQueue (Sequence Diagram)3-56

Figure 36. DMSControlModule:BlankSign (Sequence Diagram) ...3-58

Figure 37. DMSControlModule:BlankSignImpl (Sequence Diagram)......................................3-59

Figure 38. DMSControlModule:BlankSignNow (Sequence Diagram)3-60

Figure 39. DMSControlModule:CheckResourceConflict (Sequence Diagram)........................3-61

Figure 40. DMSControlModule:CreateDMS (Sequence Diagram)...3-62

Figure 41. DMSControlModule:DeactivateHARNotice (Sequence Diagram)..........................3-63

Figure 42. DMSControlModule:GetConfiguration (Sequence Diagram)..................................3-64

Figure 43. DMSControlModule:GetControlledResources (Sequence Diagram).......................3-65

Figure 44. DMSControlModule:GetStatus (Sequence Diagram) ..3-66

Figure 45. DMSControlModule:HandleOpStatus (Sequence Diagram)....................................3-68

Figure 46. DMSControlModule:HasControlledResources (Sequence Diagram)3-69

Figure 47. DMSControlModule:Initialize (Sequence Diagram)..3-70

Figure 48. DMSControlModule:PollNow (Sequence Diagram)..3-71

Figure 49. DMSControlModule:PollNowImpl (Sequence Diagram) ..3-72

Figure 50. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)..........................3-74

Figure 51. DMSControlModule:PutDMSOnline (Sequence Diagram)3-76

Figure 52. DMSControlModule:RemoveDMS (Sequence Diagram) ..3-77

Figure 53. DMSControlModule:ResetController (Sequence Diagram).....................................3-79

Figure 54. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)...................3-80

Figure 55. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram).....3-81

Figure 56. DMSControlModule:RunPollDMSTask (Sequence Diagram)3-82

Figure 57. DMSControlModule:SetConfiguration (Sequence Diagram)3-84

Figure 58. DMSControlModule:SetMessage (Sequence Diagram)...3-85

Figure 59. DMSControlModule:SetMessageFromQueue (Sequence Diagram)........................3-86

Figure 60. DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)3-87

Figure 61. DMSControlModule:SetMessageImpl (Sequence Diagram)3-88

R1B2 Servers Detailed Design Rev. 0 vii 04/17/01

Figure 62. DMSControlModule:Shutdown (Sequence Diagram)..3-89

Figure 63. DMSControlModule:TakeDMSOffline (Sequence Diagram)..................................3-91

Figure 64. DMSUtility (Class Diagram) ..3-92

Figure 65. HARControlModule (Class Diagram) ..3-96

Figure 66. HARControlModule:activateMessageNotifiers (Sequence Diagram)....................3-104

Figure 67. HARControlModule:addEntry (Sequence Diagram)..3-105

Figure 68. HARControlModule:blank (Sequence Diagram) ...3-106

Figure 69. HARControlModule:blankImpl (Sequence Diagram)..3-107

Figure 70. HARControlModule:Shutdown (Sequence Diagram) ..3-108

Figure 71. HARControlModule:createHAR (Sequence Diagram) ..3-109

Figure 72. HARControlModule:deactivateMessageNotifiers (Sequence Diagram)................3-110

Figure 73. HARControlModule:deleteSlotMessage (Sequence Diagram)3-111

Figure 74. HARControlModule:evaluateQueue (Sequence Diagram)3-112

Figure 75. HARControlModule:getConfiguration (Sequence Diagram).................................3-113

Figure 76. HARControlModule:getStatus (Sequence Diagram)..3-114

Figure 77. HARControlModule:Initialize (Sequence Diagram) ..3-115

Figure 78. HARControlModule:PutInMaintenanceMode (Sequence Diagram)......................3-116

Figure 79. HARControlModule:PutOnline (Sequence Diagram) ..3-117

Figure 80. HARControlModule:removeEntry (Sequence Diagram)3-118

Figure 81. HARControlModule:removeHAR (Sequence Diagram)..3-119

Figure 82. HARControlModule:reset (Sequence Diagram)...3-120

Figure 83. HARControlModule:setConfiguration (Sequence Diagram)3-121

Figure 84. HARControlModule:SetDefaultHeader (Sequence Diagram)................................3-122

Figure 85. HARControlModule:setDefaultMessage (Sequence Diagram)..............................3-123

Figure 86. HARControlModule:setMessage (Sequence Diagram)..3-124

Figure 87. HARControlModule:setMessageImpl (Sequence Diagram)3-126

Figure 88. HARControlModule:setTransmitterOff (Sequence Diagram)................................3-127

Figure 89. HARControlModule:setTransmitterOn (Sequence Diagram)3-128

Figure 90. HARControlModule:setup (Sequence Diagram)..3-129

Figure 91. HARControlModule:storeSlotMessage (Sequence Diagram)3-130

Figure 92. HARControlModule:TakeOffline (Sequence Diagram)...3-131

Figure 93. HARControlModule:UpdateHARMessageDateTime (Sequence Diagram)3-132

R1B2 Servers Detailed Design Rev. 0 viii 04/17/01

Figure 94. HARUtility (Class Diagram) ..3-133

Figure 95. HARUtility:PushAudio (Sequence Diagram)...3-138

Figure 96. HARUtility:StoreAudioClip (Sequence Diagram) ...3-139

Figure 97. JavaClasses (Class Diagram) ..3-140

Figure 98. MessageLibraryModuleClasses (Class Diagram)...3-144

Figure 99. MessageLibraryModule:CreateDMSStoredMessage (Sequence Diagram)3-148

Figure 100. MessageLibraryModule:CreateHARStoredMessage (Sequence Diagram).........3-150

Figure 101. MessageLibraryModule:CreateMessageLibrary (Sequence Diagram)3-151

Figure 102. MessageLibraryModule:DeleteMessageLibrary (Sequence Diagram)3-152

Figure 103. MessageLibraryModule:DeleteStoredMessage (Sequence Diagram)3-153

Figure 104. MessageLibraryModule:Initialize (Sequence Diagram).......................................3-154

Figure 105. MessageLibraryModule:IsMessageLibraryUsedByAnyPlan
(Sequence Diagram)...3-155

Figure 106. MessageLibraryModule:IsStoredMessageUsedByAnyPlan
(Sequence Diagram)...3-156

Figure 107. MessageLibraryModule:ModifyDMSStoredMessage (Sequence Diagram).......3-157

Figure 108. MessageLibraryModule:ModifyHARStoredMessage (Sequence Diagram)3-158

Figure 109. MessageLibraryModule:SetLibraryName (Sequence Diagram)3-159

Figure 110. MessageLibraryModule:Shutdown (Sequence Diagram).....................................3-160

Figure 111. MessageLibraryModule:ViewDMSStoredMessage (Sequence Diagram)3-161

Figure 112. MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram)3-162

Figure 113. PlanModuleClasses (Class Diagram)..3-163

Figure 114. PlanModule:AddItem (Sequence Diagram)..3-166

Figure 115. PlanModule:AddPlan (Sequence Diagram)..3-167

Figure 116. PlanModule:Initialize (Sequence Diagram)..3-168

Figure 117. PlanModule:PlanIsUsingObject (Sequence Diagram)..3-169

Figure 118. PlanModule:PlanItemIsUsingObject (Sequence Diagram)3-170

Figure 119. PlanModule:RemoveItem (Sequence Diagram) ...3-171

Figure 120. PlanModule:RemovePlan (Sequence Diagram) ...3-172

Figure 121. PlanModule:RemovePlanFromFactory (Sequence Diagram)3-173

Figure 122. PlanModule:SetPlanItemData (Sequence Diagram)...3-174

Figure 123. PlanModule:SetPlanItemName (Sequence Diagram)...3-175

R1B2 Servers Detailed Design Rev. 0 ix 04/17/01

Figure 124. PlanModule:SetPlanName (Sequence Diagram) ..3-176

Figure 125. PlanModule:Shutdown (Sequence Diagram) ...3-177

Figure 126. ResourceClasses (Class Diagram) ..3-178

Figure 127. ResourcesModule:ChangeUser (Sequence Diagram)...3-181

Figure 128. ResourcesModule:ForceLogout (Sequence Diagram)..3-182

Figure 129. ResourcesModule:GetControlledResources (Sequence Diagram)3-183

Figure 130. ResourcesModule:GetLoginSessions (Sequence Diagram)3-184

Figure 131. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)3-185

Figure 132. ResourcesModule:Initialize (Sequence Diagram) ..3-186

Figure 133. ResourcesModule:IsUserLoggedIn (Sequence Diagram)3-187

Figure 134. ResourcesModule:LoginUser (Sequence Diagram) ...3-188

Figure 135. ResourcesModule:LogoutUser (Sequence Diagram) ...3-189

Figure 136. ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)3-190

Figure 137. ResourcesModule:Shutdown (Sequence Diagram) ..3-191

Figure 138. ResourcesModule:TransferSharedResources (Sequence Diagram)3-192

Figure 139. SHAZAMControl (Class Diagram) ..3-193

Figure 140. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)3-199

Figure 141. SHAZAMControlModule:createSHAZAM (Sequence Diagram)3-200

Figure 142. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram).................3-201

Figure 143. SHAZAMControlModule:initialize (Sequence Diagram)....................................3-202

Figure 144. SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)3-203

Figure 145. SHAZAMControlModule:putOnline (Sequence Diagram)..................................3-204

Figure 146. SHAZAMControlModule:remove (Sequence Diagram)......................................3-205

Figure 147. SHAZAMControlModule:ResetSHAZAMtoLastKnownState
(Sequence Diagram)...3-206

Figure 148. SHAZAMControlModule:setConfiguration (Sequence Diagram).......................3-207

Figure 149. SHAZAMControlModule:shutdown (Sequence Diagram)3-208

Figure 150. SHAZAMControlModule:takeOffline (Sequence Diagram)................................3-209

Figure 151. SHAZAMUtility (Class Diagram)..3-210

Figure 152. AudioCommon (Class Diagram) ..3-211

Figure 153. CommLogManagement (Class Diagram)...3-214

Figure 154. Common (Class Diagram) ..3-216

R1B2 Servers Detailed Design Rev. 0 x 04/17/01

Figure 155. DeviceManagement (Class Diagram)...3-219

Figure 156. DictionaryManagement (Class Diagram) ...3-222

Figure 157. DMSControl (Class Diagram) ..3-224

Figure 158. PlanManagement (Class Diagram) ...3-232

Figure 159. HARControl (Class Diagram) ..3-235

Figure 160. ResourceManagement (Class Diagram) ...3-241

Figure 161. HARNotification (Class Diagram) ...3-245

Figure 162. LibraryManagement (Class Diagram) ..3-248

Figure 163. LogCommon (Class Diagram)..3-251

Figure 164. TrafficEventManagement (Class Diagram)..3-253

Figure 165. TrafficEventManagement2 (Class Diagram)..3-257

Figure 166. UserManagement (Class Diagram)...3-261

Figure 167. TrafficEventHierarchy (Class Diagram)...3-263

Figure 168. TrafficEventModuleClasses (Class Diagram) ..3-266

Figure 169. TrafficEventModule:AddCommLogEntry (Sequence Diagram)3-272

Figure 170. TrafficEventModule:AddLogEntry (Sequence Diagram)3-273

Figure 171. TrafficEventModule:AddResponseItem (Sequence Diagram).............................3-274

Figure 172. TrafficEventModule:AddResponseParticipation (Sequence Diagram)................3-275

Figure 173. TrafficEventModule:AssociateEvent (Sequence Diagram)..................................3-276

Figure 174. TrafficEventModule:ChangeEventType (Sequence Diagram).............................3-277

Figure 175. TrafficEventModule:CloseEvent (Sequence Diagram) ..3-278

Figure 176. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)............................3-279

Figure 177. TrafficEventModule:ExecuteResponse (Sequence Diagram)3-280

Figure 178. TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)................3-281

Figure 179. TrafficEventModule:GetEventHistoryText (Sequence Diagram)........................3-282

Figure 180. TrafficEventModule:Initialize (Sequence Diagram) ..3-283

Figure 181. TrafficEventModule:MonitorControlledResources (Sequence Diagram)............3-284

Figure 182. TrafficEventModule:RemoveEventAssociation (Sequence Diagram).................3-285

Figure 183. TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)3-286

Figure 184. TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)3-287

Figure 185. TrafficEventModule:SetLaneConfiguration (Sequence Diagram).......................3-288

R1B2 Servers Detailed Design Rev. 0 xi 04/17/01

Figure 186. TrafficEventModule:SetMessageForUseInResponsePlan
(Sequence Diagram)...3-289

Figure 187. TrafficEventModule:Shutdown (Sequence Diagram) ..3-290

Figure 188. TrafficEventModule:TransferTrafficEvent (Sequence Diagram)3-291

Figure 189. TTSControlModuleClasses (Class Diagram) ...3-292

Figure 190. TTSControlModule:AddMessageToQueue (Sequence Diagram)........................3-297

Figure 191. TTSControlModule:CleanupFileCache (Sequence Diagram)3-298

Figure 192. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)3-299

Figure 193. TTSControlModule:CreateFileCacheInfo (Sequence Diagram)3-300

Figure 194. TTSControlModule:GetSupportedFormats (Sequence Diagram)3-301

Figure 195. TTSControlModule:Initialize (Sequence Diagram) ...3-302

Figure 196. TTSControlModule:GetVoiceLength (Sequence Diagram).................................3-303

Figure 197. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)3-305

Figure 198. TTSControlModule:PushAudioClipInformation (Sequence Diagram)................3-306

Figure 199. TTSControlModule:Shutdown (Sequence Diagram) ...3-307

Figure 200. UserManagementModuleClasses (Class Diagram) ..3-308

Figure 201. UserManagementModule:AddUser (Sequence Diagram)3-311

Figure 202. UserManagementModule:ChangeUserPassword (Sequence Diagram)3-312

Figure 203. UserManagementModule:CreateRole (Sequence Diagram)3-313

Figure 204. UserManagementModule:DeleteProfileProperty (Sequence Diagram)3-314

Figure 205. UserManagementModule:DeleteRole (Sequence Diagram)3-315

Figure 206. UserManagementModule:DeleteUser (Sequence Diagram)3-316

Figure 207. UserManagementModule:GetSystemProfile (Sequence Diagram)......................3-317

Figure 208. UserManagementModule:GetUserProfile (Sequence Diagram)3-318

Figure 209. UserManagementModule:GrantRole (Sequence Diagram)..................................3-319

Figure 210. UserManagementModule:Initialize (Sequence Diagram)3-320

Figure 211. UserManagementModule:ModifyRole (Sequence Diagram)...............................3-321

Figure 212. UserManagementModule:RevokeRole (Sequence Diagram)...............................3-322

Figure 213. UserManagementModule:SetProfileProperties (Sequence Diagram)3-323

Figure 214. UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)3-324

Figure 215. UserManagementModule:SetUserPassword (Sequence Diagram)3-325

Figure 216. UserManagementModule:SetUserRoles (Sequence Diagram).............................3-326

R1B2 Servers Detailed Design Rev. 0 xii 04/17/01

Figure 217. UserManagementModule:Shutdown (Sequence Diagram)3-327

Figure 218. UtilityClasses (Class Diagram)...3-328

Figure 219. UtilityClasses2 (Class Diagram)...3-335

Figure 220. DatabaseLogger:getEntries (Sequence Diagram)...3-337

Figure 221. DictionaryWrapper:checkForBannedWords (Sequence Diagram)3-339

R1B2 Servers Detailed Design Rev. 0 1-1 04/17/01

1 Introduction

1.1 Purpose
This document describes the detailed design of the CHART II system software for Release 1,
Build 2. This design is driven by the Release 1, Build 2 requirements as stated in document
M361-002R1, “CHART II System Requirements Specification Release 1 Build 2” and further
refines the high level design presented in document M362-DS-005, “R1B2 High Level Design.”

1.2 Objectives
The main objective of this design is to provide software developers with details regarding the
implementation of the service applications used to satisfy the requirements of Release 1, Build 2
of the CHART II system.

This design also serves to provide documentation to those outside of the software development
community to show how the requirements are being accounted for in the software design.

1.3 Scope
This design is limited to Release 1, Build 2 of the CHART II system and the requirements as
stated in the aforementioned requirements document that have been allocated to Release 1, Build
1 or Build 2. Additionally, this design document includes only the design of CHART II services
and does not include the design of the Graphical User Interface, Database Schema, or Field
Communications.

1.4 Design Process
As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object-oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART II software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

R1B2 Servers Detailed Design Rev. 0 1-2 04/17/01

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the CHART II project, R1B2 configuration, System
Design phase. A system version is included for each software package.

1.6 Work Products
This design contains the following work products:

• = A UML Class diagram for each package showing the low level software objects
which will allow the system to implement the interfaces identified in the high level
design.

• = UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

R1B2 Servers Detailed Design Rev. 0 2-1 04/17/01

2 Key Design Concepts
This section discusses various elements of the design that warrant more discussion than the UML
diagrams afford. The High Level Design Document referenced above provides background
information on CORBA and R1B2 Packaging and Deployment that may be necessary to fully
benefit from the discussions below.

2.1 Access Control
As discussed in the R1B2 High Level Design, the CHART II system uses a flexible access
control system based around the following basic elements:

• = users
• = system functions
• = shared resources
• = functional rights and roles.

Each user of the system is assigned one or more roles. Each role has one or more functional
rights. Each system function must ensure the user initiating the operation has the proper
functional right before allowing the function to be executed. Shared Resources, which have an
owning organization, utilize an organization filter in conjunction with certain functional rights to
allow rights to be granted based on the organization that owns the device. For example, a role
may be granted a functional right to set a message on SHA DMSs but not MDTA DMSs.

This design allows access to groups of system functions to be assigned to users to easily provide
each user with the desired level of access to the system. The table in Appendix A shows each of
the system functions in R1B2 for which access control is supplied. Also shown in the table is the
functional right that is required for a user to execute the system function and whether the
functional right can be used in conjunction with an organization filter.

Implementations of system functions rely on two key elements to carry out access control, a user
access token and a token manipulator. When a user logs into the system, the UserManager object
returns an access token to the GUI that contains a binary encoding of the functional rights that
are held by the user, as defined by their currently assigned roles.

When the user attempts to execute a system function that is access controlled, the GUI passes the
user’s token as a parameter to the system function. Each system function is coded to know
exactly which functional right is required to execute the function (see the table in Appendix A
below). To determine if the user should be allowed to execute a system function, the system
function passes the user’s access token and the function’s required functional right to an object
called a token manipulator, which tells the function if it should allow execution or not.

The token manipulator encapsulates the knowledge of the binary format of an access token and
keeps the burden of access control minimal for system functions.

R1B2 Servers Detailed Design Rev. 0 2-2 04/17/01

2.2 Operations Logging
The CHART II system tracks all usage of access controlled system functions through the
operations log. When a user successfully executes such a function, a record is stored in the
operations log table in the CHART II database that contains the user’s name, operations center,
date and time, a description of the operation the user performed, and a category for the operation.
To ease the burden on system functions in performing this task, an OperationsLog utility class
exists. This utility class provides an API that allows an entry to be added to the operations log
without the system function having to interface with the database directly.

Although every access controlled system function utilizes the OperationsLog class to perform
operations logging, many diagrams in section 3 below do not show this class interaction due to
the limited amount of space available on each diagram.

2.3 Service Application Framework
In a CORBA based system, service applications are used to serve CORBA objects through the
ORB, making them available for use by other applications through a network. Once an object has
been created and connected to the ORB, the object can act as an independent piece of software,
given access to some basic services. The service applications that are built to serve CORBA
objects usually share the same basic structure and functionality. The design team took advantage
of this fact to provide a reusable framework for service applications.

The design of the application framework for CHART II CORBA Services is based upon two
interfaces, the ServiceApplication and the ServiceApplicationModule. A class that implements
the ServiceApplication interface is able to provide the basic services needed by CHART II
CORBA objects. A ServiceApplicationModule is responsible for the initialization and shutdown
of specific CORBA objects, using the services provided by the ServiceApplication.

Several classes that implement the ServiceApplicationModule interface are included in this
design, with each module responsible for serving one or more specific CHART II CORBA
classes. Each of these modules has its own initialization and shutdown methods tailored to the
needs of the objects that it serves. Typical module initialization involves object creation from a
state persisted in the database, connecting objects to the ORB, creation of an event channel, and
publication of objects in the Trading Service. Typical module shutdown involves disconnecting
objects from the ORB and destroying the objects.

The DefaultServiceApplication class provides a default implementation of the
ServiceApplication interface. The DefaultServiceApplication is capable of hosting one or more
ServiceApplicationModules. A configuration file used by the DefaultServiceApplication
specifies the modules served by a specific instance of the DefaultServiceApplication. This
design allows for flexibility in the partitioning of objects among software processes. Modules
can be brought together into a single process to achieve performance gains or moved to separate
processes to provide greater fault isolation.

The design of the Service Application Framework is evidenced throughout this design. Packages
exist for each module and a package named CHART2Service provides an application entry point
for the DefaultServiceApplication.

R1B2 Servers Detailed Design Rev. 0 2-3 04/17/01

2.4 Service Application Maintenance
The CHARTService application implements the Service interface (defined in IDL) to allow for
clean service shutdown. In addition to allowing shutdown, the Service interface includes features
that will be useful for a future system monitor process. These features include the ability for a
service to tell its name when asked, tell the network connection site where it is running, and
respond to a ping operation. Since the Service is a CORBA object attached to an ORB, these
operations on a service can be accessed from anywhere on the CHART II network.

2.5 Event Channel Fault Tolerance
The standard CORBA event service contains a single event channel that is accessed through
transient objects served by the event service called consumers and suppliers. Since the objects
are transient, if the event service should crash, applications using the event service need to
reinitialize their connection to the event service once it becomes available. The CHART II R1B2
design contains utility classes that allow applications to be tolerant of restarts of the event
service. The PushEventSupplier, PushEventConsumer, and EventConsumerGroup classes, and
the EventConsumer interface provide functionality for maintaining the connection to an event
channel. The PushEventSupplier works as a wrapper to a CORBA PushSupplier that detects
when an attempt to push fails and automatically attempts to reconnect on subsequent pushes.

The EventConsumer and EventConsumerGroup work together to allow multiple associations of
event channels and consumers to be maintained, with a polling thread that periodically checks
the connection of the consumer to the event channel and performs an automatic reconnect if
necessary. The PushEventConsumer is an implementation of the EventConsumer that uses the
push event model.

In addition to the need to provide fault tolerance for the CORBA Event Service, the standard
event service’s limitation to a single event channel causes events of all types to be passed on the
same event channel. While this provides no hardship to suppliers of events, it requires consumers
to filter the events to determine if they need to take action on an event or throw it away. This
leads to inefficiency in both the processing required to filter the events as well as the network
bandwidth used to pass unwanted events to consumers. This also makes it harder to provide a
modular GUI design that allows seamless addition of new functionality.

To make up for this shortcoming, this design makes use of the ORB vendor’s extension to the
event service that includes an EventChannelFactory interface that provides the capability for
creating multiple event channels within a single EventService. The CHART II R1B2 design
utilizes this added functionality to allow each module to be responsible for creating an event
channel in their local event service and publishing the event channel object in the trader. This
allows event channels throughout the system to be collected to provide a “big picture” of the real
time status of the system and also provides fault isolation if an event service should fail.

R1B2 Servers Detailed Design Rev. 0 2-4 04/17/01

2.6 Object Publication
As discussed in the High Level Design, the CORBA Trading Service is used by CHART II to
allow CORBA objects to be discovered and used by other applications, including the CHART II
GUI. All objects published in the Trading Service from CHART II applications are published
with a service type equal to the interface name which the object implements. Full interface name
hierarchies are used through the use of the supertypes registration feature (such as
SharedResource / DMS) to allow generic as well as specific queries. All CHART II objects
published in the trader have a standard mandatory property named “ID” of type octet sequence.
This ID is a globally unique identifier that remains with the object for the life of the object, even
through multiple restarts of the service serving the object. Use of this ID allows objects to be
located regardless of where they are being served in the system.

The following CHART II R1B2 objects are published in the Trading Service:

• = CHART2DMS

• = CHART2DMSFactory

• = CHART2HAR

• = CHART2HARFactory

• = CommLog

• = Dictionary

• = EventChannel

• = LibraryFactory

• = MessageLibrary

• = Organization

• = Plan

• = PlanFactory

• = SHAZAM

• = SHAZAMFactory

• = StoredMessage

• = TrafficEvent

• = TrafficEventFactory

• = UserManager

2.7 Pass By Value
Some system interfaces in this design rely on the pass by value feature of CORBA 2.3. Pass by
value allows a copy of a software object created by a client to be passed as an argument to a
CORBA servant (or vice versa). While this concept is much like passing a group of values
between CORBA servant and client as a structure, it features the ability to use subclassing to
allow the objects to behave polymorphically.

An example of the use of pass by value in this design is evident in the DMS control interfaces. A
value type named DMSStatus is defined which contains status values that are common to all
DMS devices. CHART2DMSStatus adds status values specific to CHART II, such as the
controlling operations center of the device. Model specific derivations add status values only
present in specific DMS models, such as the error status bits of an FP9500.

This use of subclassing allows the DMS interface to specify a method named getStatus() that
returns a DMSStatus object. The specific implementation of the DMS object will pass back the

R1B2 Servers Detailed Design Rev. 0 2-2 04/17/01

appropriate “flavor” of DMSStatus based on the DMS model. As new DMS models are added to
the system, the interface does not change, which means previously developed code can remain
stable.

Subclassing of Status objects also allows a GUI that encounters a sign model for which it does
not have a model specific status dialog to show status information that is defined in the base
class, DMSStatus. While this is of no benefit for sign models coded for directly under the
CHART II project, it would allow DMS objects published by other organizations to be viewed
easily by the CHART II GUI, without the CHART II GUI having to add any code specific to the
sign model.

2.8 Database Access
A relational database is used to store system configuration data, persist object states (to allow
restarts to assume their previous state), and to log user operations in the operations log. Java
Database Connectivity (JDBC) is used within the application software to access the database.
Access to the database is managed by the CHART II DBConnectionManager class. This class
manages connections to the database. Each software package that requires access to the database
includes a class that contains methods for all database accesses needed by the package. These
classes are named with the package name and a suffix of DB. These database classes all use the
DBConnectionManager object to obtain a JDBC connection to the database each time a series of
queries or statements are to be executed. By managing a pool of actual database connections, the
DBConnectionManager class makes sure that only one thread at a time has access to a given
database connection, thus allowing transactional processing to be done safely.

2.9 Field Communications
Field communications are necessary in R1B2 to control DMS, HAR, and SHAZAM devices. The
design for field communications is provided by the FMS subsystem and is not included in this
design. This design includes placeholder objects used to show the interface points with the FMS
communications system. These objects are only placeholders at this time because the FMS
detailed design is not complete at the time of this writing. The FMS detailed design will contain
a full discussion on the interface provided to the CHART II system.

2.10 Error Processing
Because CHART II is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All
such errors are handled by the software and are not shown explicitly in the package design

R1B2 Servers Detailed Design Rev. 0 2-3 04/17/01

portion of this document. The default action when such an error is encountered is to reach a
consistent state within the object where the error occurred and then to throw a
CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging
information as well as text suitable for display to a user or administrator. These exceptions are
shown on sequence diagrams to call out error conditions that are not obvious.

The Log utility class is used by modules to log error conditions to a flat file that is created by the
service application hosting the module. The log file entries contain the name of the class that
logged the entry, the date and time of the entry, and descriptive text of the error that occurred.
The Log utility also provides the capability for a stack trace to be printed to the file to
accompany the error. This feature is reserved for use when an error condition is caught and the
exact cause of the error condition is not known. Log files created by the Log utility class are self-
cleaning and are automatically removed from the system when they reach a certain age, as
specified in a configuration file.

2.11 Recorded Voice Handling
This design accounts for the ability for operators to record voice at their workstation for
broadcast on a HAR device. Because voice data can be very large, the passing of this voice data
is minimized through the use of wrapper objects and streamers.

Recorded voice is supported in the CHART II system for

• = immediate broadcast on a HAR

• = storage in a slot on a HAR for future broadcast, and

• = storage in a message library.

When voice is recorded the voice data is packaged in a HARMessageAudioDataClip object,
which in turn is included in a HARMessage object. Upon receiving a
HARMessageAudioDataClip, the CHART2HAR or MessageLibraryDB objects use a utility
class named HARAudioClipManager to persist the audio data and obtain a
HARMessageAudioClip in place of the HARMessageAudioDataClip. The
HARMessageAudioClip contains a unique ID assigned to the voice data and a reference to an
object known as a streamer that can provide access to the actual voice data given the ID. In
CHART II R1B2, the HARAudioClipManager utility is a streamer and places a reference to
itself in every HARMessageAudioClip it creates.

Because HARMessageAudioClip objects are small, they can be passed throughout the system as
the part of the device status for a HAR without having a significant impact on network
bandwidth usage. The only times the recorded voice data will be passed across the network after
its initial storage will be when the user wishes to listen to the voice data or the voice needs to be
recorded onto the HAR device. When this occurs, the HARMessageAudioClip is told to stream
the data and the HARMessageAudioClip delegates the request to the streamer reference it
contains, which is always the HARAudioClipManager where the data was originally stored.

Recorded voice data is automatically cleaned up from the servers when it is no longer needed.
CHART2HAR objects request that their HARAudioClipManager delete the voice data when an
immediate message containing a HARMessageAudioClip is blanked or replaced by a different

R1B2 Servers Detailed Design Rev. 0 2-4 04/17/01

message, or when a slot containing a HARMessageAudioClip is deleted or replaced. When a
StoredMessage is deleted from the system, the MessageLibraryDB object requests that any
HARMessageAudioDataClips contained in a HARMessage be deleted from the system. An
owner ID is used by the HARAudioClipManager to distinguish clips stored by the message
library vs. clips stored by a HAR. This is necessary because the CHART2HAR objects
indiscriminately ask their HARAudioClipManager to delete voice data associated with any
HARMessageAudioClip they are through playing. The owner ID is used to keep the
CHART2HAR from deleting a clip that is part of a stored message.

2.12 Packaging
This software design is broken into many packages of related classes. The table below shows
each of the packages along with a description of each.

CHART2Service This package contains an implementation of the
ServiceApplication interface specified in the utilities
package. This implementation is used as the base application
for serving one or more service application modules.
Configuration files are used to configure the service
application to specify the service application modules that
will run within an instance of the application.

CommLogModule This package contains a service application module that
serves the CommLog interface as specified in the system
interfaces.

CORBAUtilities This package contains classes included in the third party
ORB product used for implementation. Only classes that are
directly referenced from diagrams for CHART II software
are included in this package’s diagrams.

DeviceUtility This package contains utility classes that are shared device
packages, such as DMS and HAR. This includes an
implementation of the arbitration queue.

DictionaryModule This package contains a service application module that
serves the Dictionary interface as specified in the system
interfaces.

DMSControlModule This package contains a service application module that
serves the CHART2DMSFactory and CHART2DMS objects
as specified in the system interfaces.

R1B2 Servers Detailed Design Rev. 0 2-5 04/17/01

DMSUtility This package contains utility classes that are shared among
the server and GUI DMS modules. Examples of DMSUtility
classes are the MultiConverter and implementation of value
types defined in the DMSControl system interfaces.

HARControlModule This package contains a service application module that
serves the CHART2HAR and CHART2HARFactory
interfaces.

HARUtility This package contains HAR related utility classes shared by
the server and GUI.

JavaClasses This package contains classes included in the Java
programming language. Only classes that are directly
referenced from diagrams for CHART II software are
included in this package’s diagrams.

MessageLibraryModule This package contains a service application module that
serves the LibraryFactory, MessageLibrary, and
StoredMessage interfaces specified in the system interfaces.

PlanModule This package contains a service application module that
serves the PlanFactory, Plan, and Plan Item interfaces
specified in the system interfaces.

ResourcesModule This package contains a service application module that
serves the OperationsCenter and Organization interfaces
specified in the system interfaces.

SHAZAMControlModule This package contains a service application module that
serves SHAZAM and SHAZAMFactory interfaces as
specified in the system interfaces.

SHAZAMUtility This package contains SHAZAM related utility classes
shared by the server and GUI.

SystemInterfaces This package contains the CORBA interfaces and related
definitions for the CHART II system. These interfaces and
classes define the IDL for the CHART II system.

R1B2 Servers Detailed Design Rev. 0 2-6 04/17/01

TrafficEventModule This package contains a service application module that
serves instances of the TrafficEvent interface as specified in
the system interfaces.

TTSControlModule This package contains a service application module that
serves the TTSControl interface as specified in
SystemInterfaces. This interface provides conversion from
text to speech.

UserManagementModule This package contains a service application module that
serves the UserManager interface specified in the system
interfaces.

Utility This package contains utility classes shared by other
packages, including classes used to access the database and
the OperationsLog class.

The remainder of this document contains detailed designs of each of the above packages.

R1B2 Servers Detailed Design Rev. 0 3-1 04/17/01

3 Package Designs
The following sections provide detailed designs of each of the software packages included in

CHART II R1B2. Each section contains a class diagram and sequence diagrams for non-trivial
operations for a software package.

3.1 CHART2Service

3.1.1 Classes

3.1.1.1 CHART2ServiceClasses (Class Diagram)

The diagram shows classes of an application that helps in installation and termination of the
modules related to CHART II system.

*1

Service

ServiceApplication

DefaultServiceApplication
ServiceApplicationModule

CHART2Service
1 1

ping():void
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):booleanmain(string[] args):void

Figure 1. CHART2ServiceClasses (Class Diagram)

3.1.1.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the
modules in CHART II system.

3.1.1.1.2 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need

R1B2 Servers Detailed Design Rev. 0 3-2 04/17/01

to available, provide database connectivity, etc. The properties file also contains the class
names of service modules that should be served by the service application. During startup,
the DefaultServiceApplication instantiates the service application module classes listed in
the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer IDs for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.1.1.1.3 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.1.1.1.4 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.1.1.1.5 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-3 04/17/01

3.1.2 Sequence Diagrams

3.1.2.1 CHART2Service:Shutdown (Sequence Diagram)

This sequence diagram shows shutdown of CHART2Service. This service calls shutdown
on DefaultServiceApplication object that shuts down the modules that are served by the
CHART II system. Refer to DefaultServiceApplication’s Shutdown sequence diagram in
Utility package for details. The CHART2Service deactivates itself using the POA and the
CHART2Service calls the deactivate method on the POAManager to exit the event loop
and shudown.

getPOA

deactivate

deactivate_object

shutdown

shutdown

[shutdown failed]
exit

The default service application
 will call shutdown on each
installed ServiceApplicationModule.

Administrator

CHART2Service POAManagerDefaultServiceApplication POA

Figure 2. CHART2Service:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-4 04/17/01

3.1.2.2 CHART2Service:Startup (Sequence Diagram)

This sequence diagram shows startup of CHART2Service. This service creates and starts a
DefaultServiceApplication object and the modules that are served by the CHART II system.
Refer to DefaultServiceApplication’s Start sequence diagram in Utility package for details.
The CHART2Service is activated using the POA and the CHART2Service activates the
POAManager to enter the event loop and start serving the CORBA requests.

CHART2Service POAManager

This call blocks
until the POAManager
deactivate method is called.

DefaultServiceApplication

POA

getPOA

the_POAManager

activate

activate_object

main

start

create

[start failed]
exit

The default service
application will find all
installed ServiceApplicationModules
and will call initialize on each of them.

Administrator

Figure 3. CHART2Service:Startup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-5 04/17/01

3.2 CommLogModule

3.2.1 Classes

1.1.1.1 CommLogModuleClassDiagram (Class Diagram)

This Class Diagram displays classes used for managing the Communications Log.
Operators can add entries directly to the Communications Log, and entries are also added
indirectly with certain Traffic Events manipulations. Operators can view or search entries in
the Communications Log, but cannot edit them.

LogEntry

*

1

*

1

1

1

ORB

1

1

CommLogImpl

1

1

CommLogModule

PushEventSupplier

CosTrading.Register

ServiceApplicationModuleServiceApplication

java.util.Properties

CommLogModuleProperties

TokenManipulator
1

1

1

pushes
LogEntries
using

1 1

1

1

1

1
1

CommLog

1

DatabaseLogger

1

CommLogClient

java.util.Timer java.util.TimerTask
1

1

1

IteratorCleanupTask

1

addCommLog(CommLog)
getEntries(AccessToken token, LogFilter filter,
 long maxCount, LogEntryList entries) : LogIterator
addEntries(AccessToken token, LogEntryDataList logEntries) : void

DBConnectionManager m_db

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

int m_factoryOfferID

export
withdraw

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

getProperty()
setProperty()

getLogIteratorDisuseTimeout() : int
getLogIteratorDisuseCheckInterval() : int

run

getEntries(AccessToken token, LogFilter filter,
 long maxCount, LogEntryList entries) : LogIterator
addEntries(AccessToken token, LogEntryDataList logEntries) : void

schedule
cancel

run()

DatabaseLogger m_dbLogger

Figure 4. CommLogModuleClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-6 04/17/01

3.2.1.1.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART II system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.2.1.1.2 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides
services such as discovering instances of the CommLog in the trader and caching entries to
the comm log that are added when the comm log is not available.

3.2.1.1.3 CommLogImpl (Class)

This class implements the CommsLog interface; that is, it implements the methods defined
by CommLog, allowing user interface processes access to the Communications Log for
adding entries and selecting entries for viewing.

3.2.1.1.4 CommLogModule (Class)

This class implements the ServiceApplicationModule for controlling the CommLog. This
class starts up the CommsLog service, and shuts it down when requested.

3.2.1.1.5 CommLogModuleProperties (Class)

This class represents an object that provides access to properties that are specific to the
CommLog module.

3.2.1.1.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.2.1.1.7 DatabaseLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.2.1.1.8 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list

R1B2 Servers Detailed Design Rev. 0 3-7 04/17/01

is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.2.1.1.9 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.2.1.1.10 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.2.1.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.2.1.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.2.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.2.1.1.14 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It

R1B2 Servers Detailed Design Rev. 0 3-8 04/17/01

encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights that are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

R1B2 Servers Detailed Design Rev. 0 3-9 04/17/01

3.2.2 Sequence Diagrams

3.2.2.1 CommLogModule:addEntries (Sequence Diagram)

This sequence is initiated by a process (GUI) that is adding one or more entries into the
Communications Log. (A process normally adds entries one at a time as events are created.
More than one entry may be queued up if the CommsLog service has been unavailable.)
The CommsLog service adds each entry on the list to the database.

PushEventSupplier

LogEntry

[if no rights]
AccessDenied

DatabaseLogger

ORB

CommLog TokenManipulator

hasRight

[if bad]
Chart2Exception

for each
LogEntryData

passed in

push(LogEntry)

create

addEntry

"Add entry
to database"

delete

addEntries
validateToken

Figure 5. CommLogModule:addEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-10 04/17/01

3.2.2.2 CommLogModule:destroy (Sequence Diagram)

This sequence is executed by a user process (GUI) when it is done with a LogIterator (due
to no more entries left or operator cancel). Each LogEntry conceptually on the LogIterator’s
list which was never returned to the caller (if any) is removed from the cache and destroyed
if necessary, then the LogIterator itself is deleted.

[if refCount == 0]
delete

for each
remaining
entry in

list

LogIteratorImpl

LogEntry

LogEntryCache

destroy

removeEntry()

[if refCount is 0]
delete reference

[if refCount == 0]
remove(CachedLogEntry)

HashTable

decrRefCount()
getRefCount()

[if refCount is 0]
getEntry()

ORB

CachedLogEntry

Figure 6. CommLogModule:destroy (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-11 04/17/01

3.2.2.3 CommLogModule:getEntries (Sequence Diagram)

This sequence shows how the CommsLog service responds to a request from another
process (GUI) for entries from the Communications Log. The request may be constrained
by a filter (based on time, originating Op Center, author, etc.). If the amount of data is
larger than the requestor-specified size, the first clump is returned immediately, together
with a LogIterator that can be used to later retrieve additional data, which is cached as the
initial request is processed.

LogIterator may be NULL if
all entries fit in one "clump".

See
DatabaseLogger::getEntries()
for details

LogIterator

If LogIterator is non-NULL,
caller can call LogIterator for
more entries as desired.

getMoreEntries()

CommLog TokenManipulator DatabaseLogger

getEntries()

[if bad]
Chart2Exception

[if no rights]
AccessDenied

validateToken()

hasRight()

getEntries()

ORB

LogEntryList & LogIterator

LogEntryList

LogEntryList
&LogIterator

Figure 7. CommLogModule:getEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-12 04/17/01

1.1.1.2 CommLogModule:initialize (Sequence Diagram)

This sequence is executed by the Service Application to start a CommsLog service if
required. The CommLogModule creates a CommLog service object and makes it ready to
begin servicing requests. The CommLog service allows for creation and retrieval of
Communications Log Entries. New entries are pushed through the CORBA event service.

ServiceApplication

getLogIteratorDisuseTimeoutMins()
getLogIteratorDisuseCheckIntervalMins()

CommLogModule ServiceApplication

CosTrading.Register

CommLogModuleProperties

PushEventSupplier

CommLog

POA

getTradingRegister()

create

getDefaultProperties()
getProperties()

create

create

initialize

create

getEventChannelFactory()

export(EventChannel)

getDBConnectionManager()

schedule

activate_object (CommLog)

DatabaseLogger

LogEntryCache

create

GetPOA()

getEventChannel()

create

java.util.Timercreate

IteratorCleanupTask

Figure 8 CommLogModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-13 04/17/01

1.1.1.3 CommLogModule:runIteratorCleanup (Sequence Diagram)

This sequence diagram shows the processing done to clean up any stray iterators that may
have been left around by clients.

checkExpiredIterators

[iterator hasn't been used during timeout period]
delete

[*for each
iterator

IteratorCleanupTask DatabaseLogger CommLogIterator

java.util.Timer

run

Figure 9. CommLogModule:runIteratorCleanup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-14 04/17/01

1.1.1.4 CommLogModule:shutdown (Sequence Diagram)

This sequence is used to shutdown the CommsLog service as part of an orderly shutdown.
The CommsLog deletes all memory associated with cached retrieval requests and exits. No
attempt is made to persist cached data or iterators. GUIs must re-request at a later time.

delete

See
CommLogModule::destroy()
for details

LogEntryCache Hashtable

delete

CommLogModule CosTrading.Register POA

shutdown

PushEventSupplier CommLogModuleProperties

delete
delete

java.util.Timer

cancel()

withdraw(CommLog)
deactivate_object(CommLog)

delete

withdraw(EventChannel)
deactivate_object(EventChannel)

DatabaseLogger LogIteratorImpl

shutdown

destroy()
for each

LogIteratorImpl

CommLog
Service

Application

Figure 10 CommLogModule:shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-15 04/17/01

3.3 CORBAUtilities

3.3.1 Classes

3.3.1.1 CORBAClasses (Class Diagram)

The CORBAUtilities package exists to provide reference to classes that are supplied by the
ORB Vendor and are referenced by other packages’ class or sequence diagrams.

POAManager POA

CosEvent.
PushConsumer

CosEventChannelAdmin.
EventChannel

ORB

com.ooc.CosEventChannelAdmin.impl.EventChannel

CosTrading.Lookup
CosTrading.Register

activate_object(Servant obj)
deactivate_object(object_id)

the_POAManager

activate()
deactivate()

query
export
withdraw

pushfor_consumers()
for_suppliers()
destroy()

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

Figure 11. CORBAClasses (Class Diagram)

3.3.1.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor’s implementation of a CORBA event channel. The event
service provided by the vendor simply serves one of these objects. The Extended Event
Service serves a factory that allows multiple instances of the vendor supplied event channel
to be created.

3.3.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

R1B2 Servers Detailed Design Rev. 0 3-16 04/17/01

3.3.1.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.3.1.1.4 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.3.1.1.5 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.3.1.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.3.1.1.7 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.3.1.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate
the POA.

R1B2 Servers Detailed Design Rev. 0 3-17 04/17/01

3.4 DeviceUtility

3.4.1 Classes

3.4.1.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device
control.

R1B2 Servers Detailed Design Rev. 0 3-18 04/17/01

*

ArbitrationQueueDB

ArbitrationQueueImpl

DictionaryWrapper

1

1

1

ArbitrationQueue

1

*1

DBConnectionManager

1

ArbQueueEntry

getConnection():java.sql.Connection
releaseConnection();
shutdown();

interrupt():void
resume():void
requestSucceeded(reqID):void
requestFailed(reqID, prevMsgRemains, failReason):void
asyncDeviceStatus(reason):void
asyncMsgChanged(reason):void
&evaluateQueue():void

boolean m_interrupted
boolean m_deviceReqInProg
long m_deviceReqID
java.util.Vector m_msgQueue
java.lang.Object[] m_lock
DictionaryWrapper m_dictionary

get():DictionaryWrapper
setWrapperSettings(ORB, CosTrading.Lookup):void
setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

-CosTrading.Lookup m_trader
-ORB m_orb
-java.util.Vector m_dictionaries
-java.lang.Object m_lock
long m_lastTraderLookupTimestamp

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent():TrafficEvent
getTrafficEventID():byte[]
abstract setActive(String deviceName, String msg):void
abstract setInactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

TrafficEvent m_trafficEvent
byte[] m_trafficEventID
Message m_message
boolean m_inProgress
boolean m_active
boolean m_deleted
boolean m_updated

ArbitrationQueueDB(DBConnectionManager db):ArbitrationQueueDB
getArbitrationQueue(byte[] deviceID)
persist(ArbitrationQueue):void

DBConnectionManager m_db

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] trafficEventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,
 TrafficEvent trafficEvent,
 Identifier opCenterID,
 string opCenterName):void;

Figure 12. DeviceUtility (Class Diagram)

3.4.1.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

R1B2 Servers Detailed Design Rev. 0 3-19 04/17/01

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.4.1.1.2 ArbitrationQueueDB (Class)

This class handles the database interaction for the arbitration queue. The HAR module
initializes this class with the HAR database connection. Messages added to the queue are
also added to the database and removed from the database when they are removed from the
queue.

3.4.1.1.3 ArbitrationQueueImpl (Class)

This class is an implementation of the ArbitrationQueue interface as defined by the IDL.
This class arbitrates the usage of a messaging device (DMS or HAR) among multiple users.
For R1B2, the arbitration algorithm is a “last in wins” scheme, where the last request to use
the device being arbitrated overwrites any previous requests. When an arbitrated device is
in use, the operations center of the requester is used to determine if the request will be
allowed on the queue. Only a user from the same operations center that currently has a
message on a device is allowed to overwrite a previous message. On exception to this is
that users with a special functional right may override messages that were set from
operations centers other than their own.

3.4.1.1.4 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.4.1.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database

R1B2 Servers Detailed Design Rev. 0 3-20 04/17/01

connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.4.1.1.6 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

R1B2 Servers Detailed Design Rev. 0 3-21 04/17/01

3.4.2 Sequence Diagrams

3.4.2.1 ArbQueueProcessing:addEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is added to an arbitration queue.
The arbitration queue blocks the addition of the entry if the user does not have the proper
functional rights or the top entry on the queue is owned by an operations center other than
the requestor’s and the requestor does not have override rights. If the prior checks succeed,
the entry is added to the head of the message queue and any prior entries that are not in
progress or active are notified that they will not be placed on the device. If the queue does
not already have a request to set a message on the device in progress, the abstract evaluate
queue method is called and it performs processing as implemented by the derived class.

[not removed by above logic AND traffic event ID equals ID of new entry]
m_updated = true, m_deleted = false

elementAt(0)

getTrafficEvent

getControllingOpCenter

[m_interrupted]
CHART2Exception

[not m_inProgress]
evaluateQueue

m_msgQueuem_lock ArbQueueEntry TrafficEvent

Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

addEntry

synchronized

[entry for traffic event did not already exist]
add(0)

[op ctr of caller not
equal top of queue op

center AND no override]
ResourceControlConflict

HARRPIData
OR

DMSRPIData

ArbitrationQueueDB

persist

[* for each queue entry]

elementAt
[entry not m_inProgress

AND not m_active
AND not m_deleted]

getTrafficEvent

[entry not m_inProgress AND not m_active AND not m_deleted]
addLogEntry

[entry not m_inProgress
AND not m_active
AND not m_deleted]

removeAt

[improper rights]
AccessDenied

getID

[not removed by above logic]
getTrafficEventID

end synchronization

ArbitrationQueueImpl

This processing loop removes
any queue entries that have
not yet been sent to the device
because last in wins.

If an entry already exists in the
queue for the traffic event of
the new entry, replace the existing
entry, but maintain the state of the
flags. Additionally, set the updated
flag to true and the deleted flag to false.

Figure 13. ArbQueueProcessing:addEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-22 04/17/01

3.4.2.2 ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)

This diagram shows the processing that occurs when a device detects that its message has
been changed and it notifies the arbitration queue of this condition. This typically only
applies to a polled device, such as a DMS, which may detect a comm failure and then mark
the device blank after the device is comm failed for a pre-determined length of time. When
notified of this condition, the arbitration queue notifies all entries that are currently active
that they are no longer active and removes them from the queue.

m_msgQueue ArbQueueEntry

persist

asyncMsgChanged

m_lock

elementAt

[entry is active and not in progress]
setInactive

end
synchronization

[entry is active and not in progress]
remove

ArbitrationQueueDB

Chart2DMSImpl

ArbitrationQueueImpl

synchronized

[*for each queue entry]

Figure 14. ArbQueueProcessing:asyncMsgChanged (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-23 04/17/01

3.4.2.3 ArbQueueProcessing:evaluateQueue (Sequence Diagram)

This diagram shows the processing of the ArbitrationQueue’s evaluateQueue method,
which is abstract and must be implemented by derived classes. The processing done for
derived classes is similar except for the type of device type (and method signature) that is
called to set a message on the device or blank the device. This method decides what action
to take based on the entries on the queue. If the top entry on the queue is not marked for
deletion and is not active, a request is issued to the device to set the message on the device.
If all remaining entries on the queue are marked for deletion (only one possible for R1B2),
a request is sent to blank the device. After the device has processed a request originated
from the arbitration queue, it calls one of the requestSucceeded or requestFailed methods, at
which time the queue performs houskeeping. Refer to the
ArbQueueProcessing:requestSucceeded, ArbQueueProcessing:requestFailed for more
details.

ArbitrationQueueImpl

HARArbitrationQueueImpl
or

DMSArbitrationQueueImpl
Base class calls
the derived class
implementation. m_msgQueue ArbQueueEntry

Chart2HARImpl
or

Chart2DMSImpl

This method has a different
signature depending on the
device type (DMS or HAR)

Device object processes
the request asynchronously.
After completion of the request,
the device calls the Arbitration
Queue's requestSucceeded or
requestFailed method. Refer
to specific sequence diagram
for details.

evaluateQueue

elementAt(0)

[entry not set to in progress and all existing entries marked for deletion]
blankFromQueue

[entry set to in progress above]
setMessageFromQueue

[NOT entry.m_deleted AND
(NOT entry.m_active OR entry.m_updated)]

m_inProgress = true

[entry set to in progress above]
m_devReqinProgress = true,

m_deviceReqID++

Figure 15. ArbQueueProcessing:evaluateQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-24 04/17/01

3.4.2.4 ArbQueueProcessing:interrupt (Sequence Diagram)

This diagram shows the processing that occurs when the arbitration queue is interrupted.
The arbitrated device interrupts the arbitration queue when the device is taken offline or put
in maintenance mode to keep the arbitration queue from attempting to put messages on the
device. In R1B2, messages on the arbitration queue are not re-activated so when it is
interrupted it removes each entry and notifies it that it is no longer active.

ArbitrationQueueDB

m_interrupted = true

persist

Chart2DMSImpl
or

Chart2HARImpl

ArbitrationQueueImpl m_lock m_msgQueue ArbQueueEntry

interrupt

synchronized

[*for each queue entry]
remove

setInactive

end
synchronization

Figure 16. ArbQueueProcessing:interrupt (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-25 04/17/01

3.4.2.5 ArbQueueProcessing:removeEntry (Sequence Diagram)

This diagram shows the processing involved when an entry is removed from the arbitration
queue. The ID of the traffic event to be removed is used to find the corresponding queue
entry and the entry is marked for deletion. If an arbitration queue request is in progress, any
action regarding the deletion is deferred until after the current request is completed. If no
request is in progress and the entry being deleted is not active, the entry is removed from
the queue and its traffic event is notified. The abstract evaluateQueue method is then called
which may decide to replace the active message or blank the device.

ArbitrationQueueImpl

Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

[entry.m_active == false AND entry.m_inProgress == false]
setInactive

[entry.m_active == false AND
entry.m_inProgress == false]

removeAt

[NOT m_deviceReqInProg]
evaluateQueue

end synchronization

HARRPIData
OR

DMSRPIData

m_lock m_msgQueue ArbQueueEntry TrafficEvent

removeEntry

[improper rights]
AccessDenied

synchronized

[* for each queue entry]

ArbitrationQueueDB

[m_interrupted]
CHART2Exception

persist

elementAt

getTrafficEvent

[entry not found]
CHART2Exception

getID
[ID of traffic event == ID to be removed]
m_deleted = true, m_updated = false

Figure 17. ArbQueueProcessing:removeEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-26 04/17/01

3.4.2.6 ArbQueueProcessing:requestFailed (Sequence Diagram)

This diagram shows the processing that occurs when an arbitrated device completes a
request from the arbitration queue and the request has failed. When this occurs, the device
calls the arbitration queue’s requestFailed method and indicates if the failure affected the
previous message that was on the sign. The arbitration queue performs some house keeping
on its queue entries, notifying the owner of the message that was being activated of the
failure, and deactivating all other entries if the message on the device is not able to be
determined due to the type of failure. Inactive entries are removed from the queue for in
R1B2 messages are not kept automatically re-activated.

[entry.m_inProgress == true]
remove

ArbitrationQueueDB

persist

evaluateQueue

end synchronization

elementAt

[entry.m_inProgress == true]
setFailed

requestFailed

synchronized
[request ID not equal

m_deviceReqID]

[*for each queue entry]

[!entry.m_inProgress AND
!prevMsgRemains]

remove

Entry could be active
and in progress if it was
being updated.

Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

Chart2DMSImpl
OR

Chart2HARImpl

ArbitrationQueueImpl m_lock m_msgQueue

This should never happen
because we only give the
device one thing to execute
at a time, however the
request IDs are used as
a precaution.

ArbQueueEntry

[!entry.m_inProgress AND !prevMsgRemains]
setInactive

Figure 18. ArbQueueProcessing:requestFailed (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-27 04/17/01

3.4.2.7 ArbQueueProcessing:requestSucceeded (Sequence Diagram)

This diagram shows the processing that occurs when an arbitrated device completes a
request from the arbitration queue and notifies the arbitration queue that the request
succeeded. When this occurs, the arbitration queue does housekeeping on its queue entries.
Any entries that were previously marked as active are notified that they are inactive and are
removed from the queue. Any entries that were previously marked as in progress are
marked as active and are notified that they are active. When an entry’s setActive or
setInactive method is called, a log entry is made in the traffic event and the response plan
item that added the entry to the queue is notified that it is no longer active.

Refer to the ArbQueueProcessing:evaluateQueue
sequence diagram for details.

[entry.m_active == true AND entry.m_inProgress != true]
setInactive

evaluateQueue

end synchronization

requestSucceeded

synchronized

Chart2DMSImpl
OR

Chart2HARImpl

ArbitrationQueueImpl m_lock m_msgQueue

This should never happen
because we only give the
device one thing to execute
at a time, however the
request IDs are used as
a precaution.

ArbQueueEntry ArbitrationQueueDB

persist

[request ID not equal
m_deviceReqID]

[*for each queue entry]

elementAt

[entry.m_inProgress == true]
m_inProgress = false, m_active = true, m_updated = false, setActive

[entry.m_active == true AND
entry.m_inProgress != true]

remove

Entry could be active
and in progress if it was
being updated.

Figure 19. ArbQueueProcessing:requestSucceeded (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-28 04/17/01

3.4.2.8 ArbQueueProcessing:resume (Sequence Diagram)

This diagram shows the processing that occurs when the arbitration queue is told to resume
its processing. In R1B2, because the queue is emptied when it is interrupted, the only
processing that takes place is to set an internal flag and return.

persist

Chart2DMSImpl
or

Chart2HARImpl

ArbitrationQueueImpl m_lock ArbitrationQueueDB

resume

synchronized

end
synchronization

m_interrupted = false

Figure 20. ArbQueueProcessing:resume (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-29 04/17/01

3.5 DictionaryModule

3.5.1 Classes

3.5.1.1 DictionaryModClassDiagram (Class Diagram)

The DictionaryModule is a Service Application module that creates and serves the
Dictionary implementation to the rest of the CHART2 system.

DictionaryWord
DictionarySuggestion

1

*
*

1

Dictionary

1

1

1

1

DictionaryModule

ServiceApplication

PushEventSupplier

1

1

DictionaryImpl

ServiceApplicationModule

*

1

1

DictionaryDB

11

OperationsLog

1

getWord():string;
getWordType():long;
factory create(string word, long bitmask):DictionaryWord

string m_word
long m_wordTypeBitmask

getMisspelledWord():DictionaryWord
getReplacements():WordList
factory create(DictionaryWord word,
 WordList replacements):DictionarySuggestion

DictionaryWord m_misspelledWord
WordList m_replacements

DictionaryDB(DBConnectionManager db)
insertBannedWords
deleteBannedWords
getBannedWords
checkBannedWords
insertApprovedWords
deleteApprovedWords
getApprovedWords
checkApprovedWords

DBConnectionManager m_db

m_dictionaryImplList
m_evtChannelNameList

DictionaryImpl(DictionaryDB, ServiceApplication,
 PushEventSupplier)

m_ID
m_bannedWordList
m_approvedWordList

Figure 21. DictionaryModClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-30 04/17/01

3.5.1.1.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of
messaging devices are DMS, HAR, etc.

3.5.1.1.2 DictionaryDB (Class)

This class provides API calls to add, remove and retrieve banned words and approved
words from the database. The connection to the database is acquired from the Database
object that manages all the database connections.

3.5.1.1.3 DictionaryImpl (Class)

This class implements the Dictionary as specified by the IDL. It provides functionality to
add, delete and check for words that are banned or approved from being used in a DMS
message.

3.5.1.1.4 DictionaryModule (Class)

This class implements the Service Application module interface. It publishes the dictionary
implementation.

3.5.1.1.5 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.5.1.1.6 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.5.1.1.7 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART II operations log. At
the time of instantiation of this class, it creates a queue for log entries. When a user of this
class provides a message to be logged, it creates a time-stamped OpLogMessage object and
adds this object to the OpLogQueue. Once queued, the messages are written to the database
by the queue driver thread in the order they were queued.

3.5.1.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated

R1B2 Servers Detailed Design Rev. 0 3-31 04/17/01

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.5.1.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.5.1.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-32 04/17/01

3.5.2 Sequence Diagrams

3.5.2.1 DictionaryModule:initialize (Sequence Diagram)

When the DMS service calls the initialize method of Dictionary module, the dictionary
objects are created, connected to the ORB, exported to the CORBA trading service. The
dictionary objects are now available to serve the consumers.

DictionaryDB

getDictionaries

success

export

connect

create

create

ORB

PushEventSupplier

initialize

getDBConnectionManager

getORB

getTradingRepos

getEventChannelFactory

Application Service
DictionaryModule ServiceApplication CosTrading.Register

DictionaryImpl

Figure 22. DictionaryModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-33 04/17/01

3.5.2.2 DictionaryModule:shutdown (Sequence Diagram)

When the host service application calls shutdown in the Dictionary module, the dictionary
object is withdrawn from the CORBA trading service and disconnected from the ORB. The
objects are then deleted.

CosTrading.Register

withdraw(event channel)

withdraw

ORB

disconnect

Application Service
DictionaryModule

shutdown

DictionaryImpl

delete

Figure 23. DictionaryModule:shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-34 04/17/01

3.5.2.3 DictionaryImpl:addApprovedWordList (Sequence Diagram)

The given list of words is added to the approved words dictionary database. The newly
added words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”
privilege.

Operator
OperationsLogDictionaryImpl TokenManipulator DictionaryDB

insertApprovedWords

push(ApprovedWordsAdded)

log

[db error]
CHART2Exception

success

[no access]
log

db Error

PushEventSupplier

checkAccess

[no access]
AccessDenied

addApprovedWordList

Figure 24. DictionaryImpl:addApprovedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-35 04/17/01

3.5.2.4 DictionaryImpl:addBannedWordList (Sequence Diagram)

The given list of words is added to the banned words dictionary database and the copy of
the dictionary in memory is also updated. The newly added banned words are then
communicated to the dictionary event consumers by invoking the push operation. Access is
denied to any operator without the “Manage Dictionary” privilege.

TokenManipulator DictionaryDB PushEventSupplier

insertBannedWords

push(BannedWordsAdded)

[db error]
CHART2Exception

db Error

Operator

success

checkAccess

[no access]
AccessDenied

DictionaryImpl

addBannedWordList

OperationsLog

[no access]
log

log

Figure 25. DictionaryImpl:addBannedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-36 04/17/01

3.5.2.5 DictionaryImpl:checkForBannedWords (Sequence Diagram)

The string provided by the operator is scanned for any banned words by looking up the
database. Any character from the given set of delimiters is taken to be a valid delimiter of
words in the string. The list of banned words present in the string is returned.

The given string is parsed into
a list of words. The word delimiters
are specified by the caller.

The DictionaryDB object
performs a select query
using "where in" clause to
check for the banned words

DictionaryDB

checkBannedWords[error]
CHART2Exception

checkForBannedWords

"parseString"

List of banned words

Operator
DictionaryImpl

Figure 26. DictionaryImpl:checkForBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-37 04/17/01

3.5.2.6 DictionaryImpl:getApprovedWords (Sequence Diagram)

The list of approved words in the dictionary is read from the database and returned to the
operator. Access is denied to any operator without the “Manage Dictionary” privilege.

getApprovedWords

getApprovedWords

[no access]
AccessDenied

Approved Words List

OperationsLog
Operator

DictionaryImpl TokenManipulator DictionaryDB

[db error]
chart2Exception

[no access]
log

checkAccess

Figure 27. DictionaryImpl:getApprovedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-38 04/17/01

3.5.2.7 DictionaryImpl:getBannedWords (Sequence Diagram)

The list of banned words in the dictionary is read from the database and returned to the
operator. Access is denied to any operator without the “Manage Dictionary” privilege.

checkAccess

OperationsLog

[no access]
log

DictionaryDB

getBannedWords

[db error]
chart2Exception

Operator
DictionaryImpl TokenManipulator

getBannedWords

[no access]
AccessDenied

Banned Words List

Figure 28. DictionaryImpl:getBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-39 04/17/01

3.5.2.8 DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

The string provided by the operator is scanned for any words that are not present in the
approved words dictionary database. Any character from the given set of delimiters is taken
to be a valid delimiter of words in the string. For each word not present in the approved
word list, a list of suggested words is formulated. The suggested words are those in the
approved words dictionary, that have close lexical match with the disapproved word.

DictionarySuggestionImpl
[*for each disapprovedword that has suggestions]

create

[*for each disapproved word]
getSuggestionsForWord

[no disapproved words found]
success

[db error]
CHART2Exception

checkApprovedWords

getApprovedWords

The DictionaryDB object
performs a select query
using "where in" clause to
check for the approved words.

The given string is parsed into
a list of words. The word delimiters
are specified by the caller.

Operator
DictionaryImpl DictionaryDB

[db error]
CHART2Exception

performApprovedWordsCheck

"parseString"

DictionarySuggestion List

Figure 29. DictionaryImpl:PerformApprovedWordsCheck (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-40 04/17/01

3.5.2.9 DictionaryImpl:removeApprovedWordList (Sequence Diagram)

The given list of words is removed from the approved words dictionary database. The
removed words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”
privilege.

Operator
DictionaryImpl TokenModifier DictionaryDB PushEventSupplier

[no access]
log

log

deleteApprovedWords

[no access]
AccessDenied

[db error]
chart2Exception

push(ApprovedWordsRemoved)

removeApprovedWordList

checkAccess

OperationsLog

Figure 30. DictionaryImpl:removeApprovedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-41 04/17/01

3.5.2.10 DictionaryImpl:removeBannedWordList (Sequence Diagram)

The given list of words is removed from the banned words dictionary database. The
removed words are then communicated to the dictionary event consumers by invoking the
push operation. Access is denied to any operator without the “Manage Dictionary”
privilege.

OperationsLog

[no access]
log

log

Operator
DictionaryImpl TokenModifier DictionaryDB PushEventSupplier

removeBannedWordList

push(BannedWordsRemoved)

deleteBannedWords

[no access]
AccessDenied

[db error]
chart2Exception

checkAccess

Figure 31. DictionaryImpl:removeBannedWordList (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-42 04/17/01

3.6 DMSControlModule

3.6.1 Classes

3.6.1.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control
Module is an installable module that serves the DMS objects and DMSFactory to the rest of
the CHART2 system. This diagram shows how the implementation of these CORBA
interfaces rely on other supporting classes to perform their functions.

1

1 1

1

*

1

1

1

1

1

*

1 *11

1 1

CommandQueue

FP9500DMSStatus FP9500DMSConfiguration

PollDMSTask

GeoLocatable

UniquelyIdentifiable

java.util.TimerTask

Chart2DMSFactory

FP9500DMS

HARMessageNotifier

Chart2DMS

ArbitrationQueue

ArbitrationQueueImpl

DMSArbitrationQueueImpl

Chart2DMSImplDMSControlModule

PushEventSupplier

SharedResourceManager

SharedResource

ServiceApplicationModule

DMS

Chart2DMSFactoryImpl

DMSFactory

CommEnabled

FP9500DMSImpl

ServiceApplication

DictionaryWrapper java.util.Properties

DMSControlDB

DMSControlModuleProperties

QueueableCommand

CheckForAbandonedDMSTask

CheckCommLossTask

Chart2DMSConfigurationChart2DMSStatus

DBConnectionManager

java.util.Timer
11

11

1

1

*

1

1

1

1

1
1

1

3

1

2

1

1

11

1

1

*
1

1

1

evaluateQueue() : void

DMSImpl(Configuration, DMSFactory, PushEventSupplier,
 Dictionary, ServiceApplication, DMSControlDB)
blankFromQueue(long reqID) : void
blankFromQueueImpl(CommandStatus cmdStatus, long reqID) : void
blankSignImpl(AccessToken token, CommandStatus cmdStatus) : void
checkCommLoss() : void
pollIfNecessary(AccessToken token, CommandStatus cmdStat) : void
putInMaintModeImpl(AccessToken token) : void
putOnlineImpl(AccessToken token) : void
pollNowImpl(AccessToken token) : void
resetControllerImpl(AccessToken token) : void
setConfigurationImpl(AccessToken token,
 Chart2DMSConfiguration config) : void
setMessageImpl(AccessToken token, MULTIString multiString,
 boolean beaconState, CommandStatus status) : void
setMessageFromQueue(AccessToken token, MULTIString multiString,
 CommandStatus status, long reqID) : void
setMessageFromQueueImpl(AccessToken token, MULTIString multiString,
 CommandStatus status, long reqID) : void
shutdown() : void
takeOfflineImpl(AccessToken token) : void
equals(Object obj) : boolean
-blankSignNow(AccessToken token, CommandStatus cmdStatus) : boolean
-checkResourceConflict(AccessToken token,
 CommandStatus cmdStatus) : boolean
-handleOpStatus(OperationalStatus opStatus,
 CommandStatus cmdStatus) : void

Identifier m_id
Chart2DMSConfiguration m_config
Chart2DMSStatus m_status
iCosTrading.Register m_tradingRegister
DMSArbitrationQueue m_arbQueue
CommandQueue m_cmdQueue
long m_lastContactTime

int m_factoryOfferID;
DMSFactoryImpl m_factory;

Chart2DMSFactoryImpl(ServiceApplication,
 DMSControlDB, PushEventSupplier,
 SharedResourceMonitoringInterval)
checkCommLoss() : void
checkForAbandonedDMS() : void
pollDMSes() : void
shutdown() : boolean
removeDMS(Chart2DMSImpl dms)

Thread m_asyncFMSStatusThread
Collection m_dmsList

DMSControlDatabase(DBConnectionManager db)
getDMSList() : Chart2DMSImpl[]
insertDMS(Identifer dmsChart2DMSConfiguration config) : void
deleteDMS(Identifier id) : void
getConfiguration() : Chart2DMSConfiguration
getStatus() : Chart2DMSStatus
setConfiguration(Identifer dms,
 Chart2DMSConfiguration config) : void
setStatus(Identifer dms, Chart2DMSStatus status) :void

DBConnectionManager m_db;

DMSControlModuleProperties(Properties props,
 Properties defaults)
getCommLossCheckInterval() : int
getDefaultCommLossTimeout() : int
getFactoryID() : byte[]
getSharedResourceMonitoringInterval() : int

run()

Chart2DMSFactoryImpl m_factory

run()

Chart2DMSFactoryImpl m_factory

addCommand(QueueableCommand cmd)
addCommandOnTop(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

run()

Chart2DMSFactoryImpl m_factory

Figure 32. DMSControlClassDiagram (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-43 04/17/01

3.6.1.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.
When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.6.1.1.2 ArbitrationQueueImpl (Class)

This class is an implementation of the ArbitrationQueue interface as defined by the IDL.
This class arbitrates the usage of a messaging device (DMS or HAR) among multiple users.
For R1B2, the arbitration algorithm is a “last in wins” scheme, where the last request to use
the device being arbitrated overwrites any previous requests. When an arbitrated device is
in use, the operations center of the requester is used to determine if the request will be
allowed on the queue. Only a user from the same operations center that currently has a
message on a device is allowed to overwrite a previous message. On exception to this is
that users with a special functional right may override messages that were set from
operations centers other than their own.

3.6.1.1.3 CHART2DMS (Class)

The CHART2DMS class extends the DMS interface and defines a more detailed interface
to be used in manipulating the CHART II-specific DMS objects within CHART II. It
provides a method for getting the DMSArbitrationQueue for a CHART II DMS, which can
then be used by traffic events to provide input as to what each traffic event desires to be on
the sign. It also provides a method to perform testing on a sign. This method can be
extended by derived classes for specific models of signs, which know how to perform

R1B2 Servers Detailed Design Rev. 0 3-44 04/17/01

certain types of testing on their specific model of sign. CHART II business rules include
concepts such as shared resrouces, arbitration queues, and linking devices usage to traffic
events, concepts which go beyond what would be industry-standard DMS control.

3.6.1.1.4 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class that extends the
DMSConfiguration class to provide configuration information specific to CHART II
processing. Such information includes how to contact the sign under CHART II software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.6.1.1.5 CHART2DMSFactory (Class)

The CHART2DMSFactory class extends the DMSFactory interface to provide additional
CHART II specific capability. This factory creates CHART2DMS objects (extensions of
DMS objects). It implements SharedResourceManager capbility control DMS objects as
shared resources.

3.6.1.1.6 CHART2DMSFactoryImpl (Class)

The CHART2DMSFactoryImpl class provides an implementation of the
CHART2DMSFactory interface (and DMSFactory interface) as specified in the IDL. The
CHART2DMSFactoryImpl maintains a list of CHART2DMSImpl objects and is
responsible for publishing DMS objects in the Trader on startup and as new DMS objects
are created. Whenever a DMS is created or removed, that information is persisted to the
database. This class is also responsible for performing the checks requested by the timer
tasks: to poll the DMS devices and to look for DMS devices with timeout exceeded or with
no one logged in at the controlling operations center.

3.6.1.1.7 CHART2DMSImpl (Class)

The CHART2DMSImpl class provides an implementation of the CHART2DMS interface,
and by extension the DMS, SharedResource, HARMessageNotifier, CommEnabled,
GeoLocatable, and UniquelyIdentifiable interfaces, as specified by the IDL. The
CHART2DMSImpl contains a CommandQueue object that is used to sequentially execute
long running operations (field communications to the device) in a thread separate from the
CORBA request threads, thus allowing quick initial responses. The CHART2DMSImpl
also contains a DMSArbitrationQueueImpl, which handles requests from TrafficEvents to
display or remove messages from the signs in online mode. The DMSArbitrationQueueImpl
validates and arbitrates these requests and makes calls into the CHART2DMSImpl, which
then translates the requests into appropriate QueueableCommand objects (subclasses of
QueueableCommand) ands adds them to the CommandQueue. The CHART2DMSImpl
contains *Impl methods that map to each method specified in the IDL, including requests to
put a message on the sign or remove a message (in maintenance mode only), put the sign
online, offline, or in maintenance mode, or to change (set) the configuration of the sign. All

R1B2 Servers Detailed Design Rev. 0 3-45 04/17/01

of these requests require (or potentially require) field communications to the device, so each
request is stored in a specific subclass of QueueableCommand and added to the
CommandQueue. The queueable command objects simply call the appropriate
CHART2DMSImpl method as the command is executed by the CommandQueue in its
thread of execution. The CHART2DMSImpl also contains methods called by the
CHART2DMSFactory to support the timer tasks of the DMS Service: to poll the DMS
devices and to look for DMS devices with timeout exceeded or with no one logged in at the
controlling operations center. This class contains a DMSConfiguration object and
DMSStatus object, which are used store the configuration and status of the sign, and the it
also contains a lastContactTime value, used for polling and for detecting communications
timeouts.

3.6.1.1.8 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART II processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.6.1.1.9 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a
DMS device have been down long enough to decide that the sign is or should be blank or
considered to be blank. The anticipated time interval for making such a determination is on
the order of ten minutes (however, this task is called much more frequently than that, so
that the timeout can be detected soon after it has expired). This class implements the
java.util.TimerTask interface, and as such it contains one method, run(), which is invoked
by Java timer object on a regularly scheduled basis. This class contains a reference to the
CHART2DMSFactoryImpl, which is called upon to actually check the DMS objects each
time this task is called.

3.6.1.1.10 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device with
a message on it that has no one logged in at the controlling operations center. This would
only occur as a result of an anomaly—such as a reboot of a user’s machine—because
during a normal CHART II logout attempt, the logout is prohibited by CHART II system if
the the user is the last user on his/her operations center and that operations center is
controlling a sign. However, since anomalies happen, this task runs periodically to look for
abandoned DMS devices. This class implements the java.util.TimerTask interface, and as
such it contains one method, run(), which is invoked by Java timer object on a regularly
scheduled basis. This class contains a reference to the CHART2DMSFactoryImpl, which is
called upon to actually check the DMS objects and controlling operations centers of each
DMS every time this task is called.

R1B2 Servers Detailed Design Rev. 0 3-46 04/17/01

3.6.1.1.11 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.6.1.1.12 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.6.1.1.13 DMSArbitrationQueueImpl (Class)

The DMSArbitrationQueueImpl class is a derivation of the ArbitrationQueue class that is
customized to support DMS objects. It basically operates as a generic
ArbitrationQueueImpl, but it contains a DMS-specific implementation of the
ArbitrationQueue’s abstract evaluateQueue method. For this release, the only distinct
features of this method (as compared with the HARArbitrationQueueImpl’s version) is that
the setMessageFromQueue method it calls must be on a DMS type of object, and the
parameters used in calling it for a DMS class is different from calling the
setMessageFromQueue method of the HAR class.

3.6.1.1.14 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 Servers Detailed Design Rev. 0 3-47 04/17/01

3.6.1.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.6.1.1.16 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database
used to persist the DMS objects and their configuration and status in the database. It
contains a collection of methods that perform database operations on tables pertinent to
DMS Control. The class is constructed with a DBConnectionManager object, which
manages database connections. Methods exist to insert and delete DMS objects from the
database, and to get and set their configuration and status information. All information
about a sign is persisted, including its current displayed message, communications status,
and time of last contact, so that a momentary glitch or restart of the software will not
interrupt messages on signs.

3.6.1.1.17 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the
DMS Control Module. This class wraps properties that are passed to it upon construction. It
adds its own defaults and provides methods to extract properties specific to the DMS
Control Module.

3.6.1.1.18 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within CHART II. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, CHART2DMS, which defines interactions with signs under CHART II business
rules.)

R1B2 Servers Detailed Design Rev. 0 3-48 04/17/01

3.6.1.1.19 DMSControlModule (Class)

The DMSControlModule class is is the service module for the DMS devices and a DMS
factory. It implements the ServiceApplicationModule interface. It creates and serves a
single DMSFactoryImpl object, which in turn serves zero or more CHART2DMSImpl
objects.

3.6.1.1.20 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
CHART II system. It also provides a method to get a list of DMS devices currently in the
system.

3.6.1.1.21 FP9500DMS (Class)

The FP9500DMS class extends the CHART2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest
method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.6.1.1.22 FP9500DMSConfiguration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an
FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

3.6.1.1.23 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the
FP9500DMS interface, providing any specific functionality unique to this brand and model
of sign. This class is exemplary of a whole suite of implementation classes that may be
created, on a case-by-case basis, to support specific capabilities of speciifc brands and
models of signs.

3.6.1.1.24 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to
the FP9500 model of sign. It is exemplary of potentially a whole suite of
CHART2DMSStatus subclasses specific to a specific brand and model of sign.

3.6.1.1.25 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

R1B2 Servers Detailed Design Rev. 0 3-49 04/17/01

3.6.1.1.26 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

R1B2 Servers Detailed Design Rev. 0 3-50 04/17/01

3.6.1.1.27 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.6.1.1.28 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.6.1.1.29 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.6.1.1.30 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices. This class
implements the java.util.TimerTask interface, and as such it contains one method, run(),
which is invoked by Java timer object on a regularly scheduled basis. This class contains a
reference to the CHART2DMSFactoryImpl, which is called upon to request each DMS to
poll itself (its poll interval has expired) each time this task is called.

3.6.1.1.31 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

R1B2 Servers Detailed Design Rev. 0 3-51 04/17/01

3.6.1.1.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.6.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.6.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.6.1.1.35 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.6.1.1.36 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.6.1.1.37 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-52 04/17/01

3.6.1.2 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS
Control. A class exists for each type of command that can be executed asynchronously on a
DMS object.

SetDMSMessageFromQueueCmd BlankFromQueueCmd

TakeDMSOfflineCmd

QueueableCommand

SetDMSConfigCmdPutDMSOnlineCmd ResetDMSCmd

PutDMSInMaintModeCmd

BlankDMSCmd PollDMSNowCmdSetDMSMessageCmd

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
MULTIString m_multiMessage
boolean m_beacon
long reqID execute()

interrupt()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
long reqID

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()
getCmdStatus():CommandStatus
getToken():byte[]

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
boolean m_maintMode

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
MULTIString m_multiMessage
boolean m_beacon

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
Chart2DMSConfiguration m_config

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

Figure 33. QueueableCommandClassDiagram (Class Diagram)

3.6.1.2.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass that contains data necessary to
send a request to a CHART2DMSImpl to blank the sign in maintenance mode. It is created
by the CHART2DMSImpl during successful processing of its blankSign method. When the
CommandQueue invokes the execute method of this class, it merely calls the
blankSignImpl method of the appropriate CHART2DMSImpl object with the data stored
within this class.

R1B2 Servers Detailed Design Rev. 0 3-53 04/17/01

3.6.1.2.2 BlankFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to blank the sign during normal
operations (online mode). It is created by the CHART2DMSImpl during successful
processing of its blankFromQueue method. When the CommandQueue invokes the execute
method of this class, it merely calls the blankFromQueueImpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.3 PollDMSNowCmd (Class)

The PollDMSNowCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to poll its device. It is created by the
CHART2DMSImpl during successful processing of its pollNow method in maintenance
mode (triggered by a user request) or during processing of the pollIfNecessary method
(triggered by the automatic polling of the PollDMSTask object). When the CommandQueue
invokes the execute method of this class, it merely calls the pollNowImpl method of the
appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.4 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to put the sign in maintenance mode
(from either offline or online mode). It is created by the CHART2DMSImpl during
successful processing of its putDMSInMaintMode method. When the CommandQueue
invokes the execute method of this class, it merely calls the putDMSInMaintModeImpl
method of the appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.5 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data
necessary to send a request to a CHART2DMSImpl to put the sign online (from either
offline or maintenance mode). It is created by the CHART2DMSImpl during successful
processing of its putDMSOnline method. When the CommandQueue invokes the execute
method of this class, it merely calls the putDMSOnlineImpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a

R1B2 Servers Detailed Design Rev. 0 3-54 04/17/01

command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.6.1.2.7 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass that contains data necessary to
send a request to a CHART2DMSImpl to put reset the sign (in maintenance mode only). It
is created by the CHART2DMSImpl during successful processing of its resetController
method. When the CommandQueue invokes the execute method of this class, it merely
calls the resetControllerImpl method of the appropriate CHART2DMSImpl object with the
data stored within this class.

3.6.1.2.8 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to update its configuration (in
maintenance mode only). It is created by the CHART2DMSImpl during successful
processing of its setConfiguration method. When the CommandQueue invokes the execute
method of this class, it merely calls the setConfigurationImpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.9 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass that contains data
necessary to send a request to a CHART2DMSImpl to put a message on the sign in
maintenance mode. It is created by the CHART2DMSImpl during successful processing of
its setMessage method. When the CommandQueue invokes the execute method of this
class, it merely calls the setDMSMessageImpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

3.6.1.2.10 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass that contains
data necessary to send a request to a CHART2DMSImpl to put a message on the sign
during normal operations (online mode). It is created by the CHART2DMSImpl during
successful processing of its setMessage method. When the CommandQueue invokes the
execute method of this class, it merely calls the setDMSMessageFromQueueImpl method
of the appropriate CHART2DMSImpl object with the data stored within this class.

3.6.1.2.11 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data
necessary to send a request to a CHART2DMSImpl to put the sign offline (from either
online or maintenance mode). It is created by the CHART2DMSImpl during successful
processing of its takeDMSOffline method. When the CommandQueue invokes the execute
method of this class, it merely calls the takeDMSOfflineImpl method of the appropriate
CHART2DMSImpl object with the data stored within this class.

R1B2 Servers Detailed Design Rev. 0 3-55 04/17/01

3.6.2 Sequence Diagrams

3.6.2.1 DMSControlModule:ActivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request to be
used as a SHAZAM by a HAR. This method is called by the HAR’s
activateMessageNotifier method. The operator (making the original HAR request) must
have proper functional rights for the sign, and the sign must be online. This method creates
a HARNotifierArbQueueEntry and adds it to its own ArbitrationQueue via the
ArbitrationQueue’s addEntry command. (The ArbitrationQueue will not replace a “real”
DMS message with a SHAZAM message. However, for this build if the request is rejected
by the ArbitrationQueue the request is completely tossed out – it is not queued up to wait
for an opportunity later when the other message goes away.) If the ArbitrationQueue
accepts the request, it may eventually by processed by the DMS’s setMessageFromQueue
method.

[offline or maint mode]
completed("wrong mode")

[offline or maint mode]
CHART2Exception

create(tfcEvent, m_Chart2DMSConfig.m_shazamMessage,
cmdStatus)

HARNotifierArbQueueEntry

addEntry(token, HARNotifierArbQueueEntry)

DMSArbitrationQueueImpl
HARImpl

Chart2DMSImpl TokenManipulator
cmdStatus:

CommandStatus

activateHARNotice(token, tfcEvent, cmdStatus)

checkAccess
[no rights]

completed("no rights")[no rights]
AccessDenied

Figure 34. DMSControlModule:ActivateHARNotice (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-56 04/17/01

3.6.2.1.1 DMSControlModule:BlankFromQueue (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to blank
its message while it is online. (For blanking messages in maintenance mode, see blankSign.)
This sequence is actually initiated in the ArbitrationQueue, when it determines that the current
message no longer belongs on the sign, and it has no other message to replace it. The
ArbitrationQueue’s evaluateQueue method calls this method. The DMS must still be online.
There is no operator associated with this request, no functional rights to verify, and no
operator-monitored CommandStatus object to update. A BlankFromQueueCmd (a
QueueableCommand) is created and added to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and can
queue up. When the CommandQueue is ready, it executes the BlankFromQueueCmd, which
calls the BlankFromQueueImpl method, also shown on this diagram. The
blankFromQueueImpl method simply calls blankSignNow, and reports success or failure to
the ArbitrationQueue via the requestFailed or requestSucceeded method (at which time the
ArbitrationQueue may re-evaluate its own queue and request another change to the sign).
Althought there is no CommandStatus object directly communicating status of this operation,
the ArbitrationQueue still updates the TrafficEvent(s) that did have control of the sign when
the sign is successfully blanked.

[failure]
requestFailed(reqID)

delete

blankFromQueue(reqID)
[not online]

completed("wrong mode")

addCommand(BlankFromQueueCmd)

update("command queued")

BlankFromQueueImpl

[not online]
CHART2Exception("wrong mode")

execute

This method used
online only. In maint
mode, blankSign
is used.

BlankFromQueueCmd

CommandQueue

CommandQueue executes
command asynchronously.

DMSArbitrationQueueImpl

Chart2DMSImpl CommandStatus

CommandStatus

DMSArbitrationQueueImpl

AccessToken

Dummy objects. When BlankFromQueueCmd
executes, the methods it calls need to have them,
although the AccessToken isn't used at all and
the CommandStatus is written to but not read
by any human or process.

blankSignNow

[success]
requestSucceeded(reqID)

create

create

Figure 35. DMSControlModule:BlankFromQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-57 04/17/01

3.6.2.1.2 DMSControlModule:BlankSign (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
blank its message in maintenance mode. (The analogous method in online is
blankFromQueue.) The DMS must be in maintenance mode, the requesting operator must
have proper functional rights, and if there is a message on the sign from another operations
center, the user must have override authority. This method creates a BlankDMSCmd (a
QueueableCommand) and adds it to the DMS’s CommandQueue. The CommandQueue is
required since field communications to the sign are relatively slow and can queue up.
Requests to communicate with the sign are processed on a first-come, first-served basis.
When the CommandQueue is ready, it executes the BlankDMSCmd, which calls the
blankSignImpl method. The requesting user is kept abreast of progress of the request all the
while, via a CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-58 04/17/01

delete

See DMSControlModule:blankSignImpl
for details.

Operator
Chart2DMSImpl CommandQueue

This can occur when
the DMS is displaying
a message in maint mode
that was set by a user
from different op center.

CommandStatus

BlankDMSCmd

CommandQueue
executes commands
asynchronously

[not in maint mode]
CHART2Exception

[no rights]
AccessDenied

execute

blankSignImpl

completed

[resource conflict]]
ResourceControlConflict

command queued

blankSign(token, cmdStat)

[not in maint mode]
completed

[no rights]
completed

create

addCommand(BlankDMSCmd)

create

OperationsLog

Updates cmdStat
(completed() call)
if conflict found.checkResourceConflict

(token, cmdStat)

This method used in maint
mode only. Online, see
blankSignFromQueue.

[no rights]
log(token, "unauth. attempt to blank DMS <name>")

update("command queued")

Figure 36. DMSControlModule:BlankSign (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-59 04/17/01

3.6.2.2 DMSControlModule:BlankSignImpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object executes a command to
blank its message in maintenance mode. (The analogous method in online mode is
blankFromQueueImpl.) An operator request to blank the sign has already been received
and pre-processed by the blankSign method. When the blankSignImpl method runs, it
checks that the DMS is still in maintenance mode (a previously queued command could
have changed it), that the user has rights, and that there is no resource conflict (a previously
queued command could have written a message from an operator at another operations
center). Assuming no problems, the method blankSignNow is called to request FMS to
actually change the sign, update the database, and handle any status change, and push a
CurrentDMSStatus event into the event channel, so that any user (with rights) can
immediately see that the sign is now blank. The requesting user is kept abreast of progress
of the request all the while, via a CommandStatus object viewable by the user.

Updates cmdStatus
(completed() call)
if conflict found

TokenManipulator

blankSignNow
(token, cmdStatus)

Updates cmdStatus
(update() call)
OperationsLog,
updates & pushes new
DMSStatus if necessary.

completed("could not blank sign")

checkResourceConflict
(token, cmdStatus)

This method used in maint mode only.
For online mode, see blankSignFromQueueImpl.

BlankDMSCmd

Chart2DMSImpl OperationsLogCommandStatus

blankSignImpl(token, cmdStatus)

[not in maint mode]

[resource conflict]

[not in maint mode]
completed("wrong mode")

Figure 37. DMSControlModule:BlankSignImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-60 04/17/01

3.6.2.3 DMSControlModule:BlankSignNow (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object actually blanks the sign.
This is a utility method called at many points during DMS operations. The sign must be
blanked when requested by the user in maintenance mode, when implicitly requested when
online by removing a message, when changing modes (online, offline, maintenance mode),
and when resetting the sign. This method blanks the sign by creating an empty message and
requesting, via FMS, that the sign display the blank message. The method handleOpStatus
handles and responds to any changes to the operational status of the sign (OK, comms
failure, or hardware failure) reported by FMS during this operation. This method writes
progress and status information to a CommandStatus object, so that progress can be
monitored by the user (if any is associated with this operation – there is no user with an
implicit request by the ArbitrationQueue to blank a sign while online). A
CurrentDMSStatus event is pushed into the event channel, so that any user (with rights) can
immediately see that the sign is now blank.

DMSControlDB

m_status:
Chart2DMSStatus

[failure blanking sign]
update("blank failed")

setControllingOpCenter(none)

DMSEvent

Chart2DMSImpl

Chart2DMSImpl FMS

[failure]

handleOpStatus(result, cmdStatus)

PushEventSupplier OperationsLog

setStatus(m_status)

create "Any" DMSEvent of type CurrentDMSStatus

push(CurrentDMSStatus)

DMSMessagecreate DMSMessage with blank multiMsg, beacon false

setCurrentMessage

log(token, "DMS blanked")

Updates cmdStatus, updates
& pushes new DMSStatus
if necessary

Use update() call, not completed(), because this method doesn't know if the operation
is completed or not -- e.g. if taking DMS offline that operation will continue.

Use update() call, not completed(), because this method doesn't know if the operation
is completed or not -- e.g. if changing modes or reseting DMS that operation will continue.

update("sign blanked")

CommandStatus

This method is called by several methods to actually blank the
sign, after all checks have been performed. This method just
goes to FMS and does it. This method is called by blankSignImpl,
blankFromQueueImpl, PutDMSInMaintMode, PutDMSOnline,
TakeDMSOffline, and resetController.

blankSignNow(token, cmdStatus)

create a multiMsg
containing the empty string

update("blanking sign")

dmsSetMessage(m_id, agent, community, multiMsg, forever, my addr, beacon)

Figure 38. DMSControlModule:BlankSignNow (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-61 04/17/01

3.6.2.4 DMSControlModule:CheckResourceConflict (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object checks a sign for a
resource conflict prior to performing some other sort of operation on it. This utility method
is called from several other methods within the DMS service. If the DMS is currently
displaying a message, and therefore has a controlling operations center, and it is not equal
to the caller’s operations center, and the user does not have override authority, there is a
resource control conflict. Otherwise, there is not. If there is a resource control conflict, a
message to this effect is written to the CommandStatus object, which may be monitored by
the requesting user.

cmdStat:
CommandStatus

[no override access]
completed("resource conflict")

Chart2DMSImpl

TokenManipulatorChart2DMSImpl

[no controlling op center]
no conflict

checkAccess(token)
[has override access]

no conflict

[no override access]
conflict

getControllingOpCenter

checkResourceConflict(token, cmdStat)

getOpCenterID(token)[token op center ID ==
controlling op center id]

no conflict

Figure 39. DMSControlModule:CheckResourceConflict (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-62 04/17/01

3.6.2.5 DMSControlModule:CreateDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl creates a new DMS on behalf of
an operator. The operator must posess the proper functional rights to create a DMS. The
request to create a new DMS contains all data necessary to create it in a DMSConfiguration
object—most likely one of some specific subclass, such as FP9500DMSConfiguration
(unless it is to be a truly generic CHART2DMS, one which has no extended capabilities, or
one of a new type whose extended capabilities are not yet encoded in CHART II software).
When a request to create DMS is received by the DMSFactory, the DMSControlDB is
asked to create and persist it to the database. A (subclassed) CHART2DMSImpl object and
its corresponding DMSArbitrationQueueImpl and CommandQueueImpl are created, and
the CommandQueue thread is started. Information about the new DMS is also
communicated to the FMS subsystem. The object is connected to the ORB and is ready for
operations. A DMSAddedEvent is then pushed into the event channel. A DMS is initially in
offline mode when it is created.

[DB error]

push(DMSAddedEvent)
[success]

log(token, "DMS created")

[DB error]
CHART2Exception

addDMS

[no rights]
log(token, "no rights")

create

insertDMS returns the specific Impl object
as a generic Chart2DMSImpl.

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on the subclass
of Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).
(The DMSControlDB also has to use this sort of logic on startup when creating
DMS Impl objects from persisted DMS information stored in the database.

CommandQueue
This starts the CommandQueue's
thread of execution, looking for commands
to run and processing them.

create

run

registerObject (DMS)

[no rights]
Access Denied

checkAccess

insertDMS(new id, config)

DMS

createDMS(token, config)

create

activate_object (DMS)

POA OperationsLogDMSControlDB

ORB

Chart2DMSImpl

TokenManipulatorDMSFactoryImpl ServiceApplication PushEventSupplier

DMSArbitrationQueueImpl

FMS

Figure 40. DMSControlModule:CreateDMS (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-63 04/17/01

3.6.2.6 DMSControlModule:DeactivateHARNotice (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request to
discontinue operation as a SHAZAM for a HAR. This method is called by the HAR’s
deactivateMessageNotifier method. The operator (ending the HAR message) must have
proper functional rights for the sign, and the sign must be online. This method calls the
ArbitrationQueue’s removeEntry command to handle the request, and the ArbitrationQueue
will respond (now or later) with another setMessageFromQueue or blankFromQueue
request, as appropriate.

For details, see the sequence diagram
DeviceUtility/ArbitrationQueueProcessing:RemoveEntry.

removeEntry (token, tfcEvent)

HARImpl
Chart2DMSImpl

cmdStat:
CommandStatus DMSArbitrationQueueImpl TokenManipulator

deactivateHARNotice(token, tfcEvent, cmdStat)

checkAccess
[no rights]
completed[no rights]

AccessDenied
[offline or maint mode]

completed[offline or maint mode]
CHART2Exception

Figure 41. DMSControlModule:DeactivateHARNotice (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-64 04/17/01

3.6.2.7 DMSControlModule:GetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request for
its configuration. Its configuration is always maintained in current form in a
CHART2DMSConfiguration object, so this object is just returned immediately.

ORB
Chart2DMSImpl TokenManipulator OperationsLog

getConfiguration(token)
checkAccess(token)

[no rights]
log(token, "unauth. access attempt")[no rights]

AccessDenied

Chart2DMSConfiguration

This object is always kept up to date
throughout the life of the Chart2DMSImpl.
All that needs to be done is to return the
existing, current Chart2DMSConfiguration
object.

Figure 42. DMSControlModule:GetConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-65 04/17/01

3.6.2.8 DMSControlModule:GetControlledResources (Sequence Diagram)

This Sequence Diagram shows how the CHART2DMSFactoryImpl handles a request to get
a list of controlled resources for an operations center. The CHART2DMSFactoryImpl
simply asks each CHART2DMSImpl for its controlling operations center, and if it matches
the OperationsCenter in question, the DMS is added to a list. This list is returned to the
caller.

[*for
each
DMS]

ORB

Chart2DMSFactoryImpl Chart2DMSImpl

getControlledResources (op ctr)

getControllingOpCenter

[controlling op ctr ==
op ctr]

(add to list)

DMSList of controlled resources

Figure 43. DMSControlModule:GetControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-66 04/17/01

3.6.2.9 DMSControlModule:GetStatus (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request for
its status. Its status is always maintained in current form in a CHART2DMSStatus object,
so this object is just returned immediately.

ORB

Chart2DMSImpl TokenManipulator OperationsLog

This object is always kept up to date
throughout the life of the Chart2DMSImpl.
All that needs to be done is to return the
existing, current Chart2DMSStatus object.

getStatus

Chart2DMSStatus

Figure 44. DMSControlModule:GetStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-67 04/17/01

3.6.2.10 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl handles the important task of
detecting and responding to changes in its operational status (whether it is in “OK”,
“COMM_FAILURE” or “HARDWARE_FAILURE” status). A DMS is normally “OK”,
but falls into “COMM_FAILURE” when FMS reports that it cannot communicate with the
device, and into “HARDWARE_FAILURE” when the FMS can communicate with the
device but the device or FMS is detecting some sort of hardware problem with the device
itself. At this point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually
identically. This method is called, with the status reported back from FMS, after every
attempt to communicate with the device, and processing falls into one of three cases,
depending on the status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status,
and all that is necessary is to update the m_lastContactTime of the device. (This variable is
used to determine when to poll [see runPollDMSTask] and when to declare that a
“Communications Timeout” has occurred [see runCheckCommLossTask].) If the status has
just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out
into the event channel. A request is added to the CommandQueue to poll the device as soon
as possible to determine exactly what the status of the sign is. (This is the one exception to
the rule that commands on the CommandQueue are processed first-in, first out. The poll
command is inserted at the top of the queue so that it is the next command to execute. The
DMS cannot easily be polled at this point, because there may be an operation in progress,
but in the interest of timeliness, we want to poll ASAP.) Finally, the ArbitrationQueue is
notified, so that if there has been a message up on the sign it can notify the controlling
TrafficEvent(s) (this is for logging purposes only, it takes no other action).

If the device is now being reported with a failure and the device was already in that failure
condition, there is no change in status, and nothing is done. If the status is just now
changing, this is logged, and the DMSStatus is persisted and pushed out into the event
channel. Finally, the ArbitrationQueue is notified, so that if there has been a message up on
the sign it can notify the controlling TrafficEvent(s) (this is for logging purposes only, it
takes no other action). Note that if the device has gone into COMM_FAILURE, and it
remains in this condition for the timeout period, the CheckCommLossTask’s run method
will detect and handle it (see runCheckCommLossTask). Until the timeout period expires, it
is assumed that the message is still on the sign, so no further action is taken now. If the
device has gone into HARDWARE_FAILURE, FMS is still in contact with it, and changes
in status (e.g., loss of a message) can be detected by other means, for instance, by polling
(see runPollDMSTask)

R1B2 Servers Detailed Design Rev. 0 3-68 04/17/01

OperationsLog

log("DMS now operational")

log("DMS has just lost comms")

log("DMS has just gone into HW failure")

Bad status has been handled previously.
No need to do anything more.

cmdStatus:
CommandStatus

If opStatus == COMM_FAILURE

asyncDeviceStatus("DMS <name> hardware failure detected")

m_lastContactTime = now

asyncDeviceStatus("DMS <name> now OK")

This informs the active trafficEvent(s)
(if any) of the hardware failure.

setOpStatus(OK)

This informs the active trafficEvent(s)
(if any) of the comms failure.

PushEventSupplier

Normal case,
opStatus OK and unchanged

Poll device ASAP to make sure we have its complete status and config.
If the message doesn't match, poll will catch it and inform Arb Queue.
(For instance, if we have blanked due to commLossTimeout, but the sign
still displays a message, that will be caught and corrected by the poll.)

setStatusChangeTime(now)
updateStatus(m_id, m_status)

push(CurrentDMSStatus)

update("DMS just reported HW failure")NOTE: if we remain in HW_FAILURE for
the commLossTimeout period, the
CheckCommLossTask will detect it and
handle that situation.

[m_status.m_opStatus == COMM_FAILURE]

setOpStatus(COMM_FAILURE)

push(CurrentDMSStatus)

setStatusChangeTime(now)

setStatusChangeTime(now)

update("DMS now OK")

update("DMS just CommFailed")

updateStatus(m_id, m_status)

updateStatus(m_id, m_status)

Chart2DMSImpl
Chart2DMSImpl

If opStatus == OK

DMSArbitrationQueueImpl
m_status:

DMSStatus CommandQueue

handleOpStatus(opStatus, cmdStatus)

NOTE: if we remain in COMM_FAILURE for
the commLossTimeout period, the
CheckCommLossTask will detect it and
handle that situation.

If opStatus == HW_FAILURE

Bad status has been handled previously.
No need to do anything more.

[m_status.m_opStatus == HW_FAILURE]

DMSControlDB

addCommandOnTop(PollDMSNowCmd)

push(CurrentDMSStatus)

[m_status.m_opStatus == OK]

setOpStatus(HW_FAILURE)

This informs the active trafficEvent(s)
(if any) that the device is OK again.

asyncDeviceStatus("DMS <name> comms failure detected")

Figure 45. DMSControlModule:HandleOpStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-69 04/17/01

3.6.2.11 DMSControlModule:HasControlledResources (Sequence Diagram)

This Sequence Diagram shows how the CHART2DMSFactoryImpl handles a request to see
if an operations center has any controlled resources. The CHART2DMSFactoryImpl simply
asks each CHART2DMSImpl for its controlling operations center, and if it matches the
OperationsCenter in question, a value of true is immediately returned to the caller. If the
CHART2DMSFactoryImpl makes it through its whole list of DMS objects without finding
an OperationsCenter match, a value of false is returned.

Chart2DMSFactoryImpl Chart2DMSImpl

[*for each
DMS

Break out of loop once a
controlled resource is found.
One is enough to return "true".

ORB

hasControlledResources (op ctr)

[* for each DMS]
getControllingOpCenter

[controlling op ctr == op ctr]
true

false

Figure 46. DMSControlModule:HasControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-70 04/17/01

3.6.2.12 DMSControlModule:Initialize (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started. This module is
created by a service application that will host this module’s objects. A ServiceApplication
is passed to this module’s initialize method and provides access to basic objects needed by
this module. This module creates a DMSFactory, which creates the known DMS objects,
which have been persisted into the database. The DMSFactory and DMS objects are
published via the CORBA Trading Service to make them available for general status
updates and as candidates for control (given the proper access rights). In addition to
servicing CORBA requests, this service also performs regularly recurring maintenance
functions controlled by timer tasks started by this initialize method.

PollDMSTask
schedule

To periodically have each DMS check to see
if it is time to poll (poll interval expired) and
poll if necessary.

registerObject(DMS)

getDefaultProperties
getProperties

create

create

initialize

create

getDMSObjects

create

create

getEventChannelFactory

activate_object (DMSFactory)

activate_object
(DMS)

getDBConnectionManager
getOperationsLog

registerObject(DMSFactory)

registerEventChannel
(EventChannel)

[*for
each
DMS
in DB]

[2]

create

DictionaryWrapper

Chart2DMSImpl

ServiceApplication

DMSControlModule ServiceApplication

DMSControlDB

To periodically check for
active DMSs with no one logged
in at the controlling Op Ctr.

DMSControlModuleProperties

To periodically check for comm
loss timeout and blank the sign.

PushEventSupplier

DMSFactoryImpl

POA

DMSArbitrationQueueImpl

FMS

create

[*for
each
DMS

object]

getEventChannel

getPOA

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on data
stored in the database when the DMS was initially created and
persisted. (At the DMS creation time, the DMSControlDB knows what
specific type of Impl to create based on the subclass of
Chart2DMSConfiguration passed in (such as FP9500DMSConfuguration).)

create
schedule

create

java.util.timer

CheckCommLossTask

CheckForAbandonedDMSTask

create

create
schedule

CommandQueuecreate

run

Two -- one for DMSs for status/config/existence changes,
one for the Module for abandoned DMSs (active DMSs with
no one logged in at the controlling Op Ctr) (resourcMgtEventChannel).

Figure 47. DMSControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-71 04/17/01

3.6.2.13 DMSControlModule:PollNow (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by
an operator to immediately poll the device. The DMS must be in maintenance mode and
operator must posess proper functional rights. This method creates a PollDMSNowCmd (a
QueueableCommand) and adds it to the DMS’s CommandQueue. The CommandQueue is
required since field communications to the sign are relatively slow and can queue up.
Requests to communicate with the sign are processed on a first-come, first-served basis.
When the CommandQueue is ready, it executes the PollDMSNowCmd, which calls the
pollNowImpl method. The requesting user is kept abreast of progress of the request all the
while, via a CommandStatus object viewable by the user.

create

delete

Command is executed
asynchronously.

ORB

Chart2DMSImpl TokenManipulator OperationsLog

For details, see the sequence diagram
DMSControlModule:PollNowImpl.

pollNow(token, cmdStatus)

checkAccess(token)

[not in maint mode]
CHART2Exception("wrong mode")

[no access]
AccessDenied

[not in maint mode]
completed("wrong mode")

[no rights]
completed("no rights")

CommandStatus

PollDMSNowCmd

CommandQueue

delete

pollNowImpl

create
addCommand(PollDMSNowCmd)

execute

[no rights]
log(token, "no rights")

Figure 48. DMSControlModule:PollNow (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-72 04/17/01

3.6.2.14 DMSControlModule:PollNowImpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object implements the polling of
the DMS device. The poll request could come from the operator (via the pollNow method)
or from the automated polling thread within the DMS service itself (PollDMSTask’s run
method). The pollNowImpl method issues a ForcedPoll request to FMS and calls the
method handleOpStatus to detect and handle any changes to the operational status of the
sign (OK, comms failure, or hardware failure) reported by FMS during this operation. The
status returned is persisted to the database and pushed out as a CurrentDMSStatus event on
the event channel. Updates are also written to a CommandStatus object, so that if a user
issued this request, he or she can see monitor its progress.

Updates cmdStatus
on status change.

Updates cmdStatus, updates &
pushes new DMSStatus on status change.

CommandStatus

DMSEvent

pollNowImpl(token)
[offline]

completed("offline")

forcedPoll

create "Any" DMSEvent of type CurrentDMSStatus)

completed("poll complete, change detected")

push (CurrentDMSStatus)

[offline]

PollDMSNowCmd

Chart2DMSImpl FMS DMSArbitrationQueueImpl

See ArbitrationQueue
processing to see how
this message is handled.

[success]

[failure]

completed("failed")

handleOpStatus(OK, cmdStatus)

PushEventSupplierDMSControlDB

handleOpStatus(failure type, cmdStatus)

updateStatus(m_status)
[no change in status]

[failure]

[no change in status]
completed("success, no status change")

[msg on DMS not as expected]
asyncMsgChanged("DMS <name>: message unex. changed to <text>")

Figure 49. DMSControlModule:PollNowImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-73 04/17/01

3.6.2.15 DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go into maintenance mode. The requesting operator must have proper functional
rights, and if there is a message on the sign from another operations center, the user must
have override authority. And of course the sign must not be in maintenance mode already,
otherwise the request is redundant. The ArbitrationQueue is interrupted, so that it will stop
attempting to modify the sign (as it does in online mode). A PutDMSInMaintModeCmd (a
QueueableCommand) is created and added to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and
can queue up. When the CommandQueue is ready, it executes the
PutDMSInMaintModeCmd, which calls the putInMaintModeImpl method, also shown on
this diagram. The putInMaintModeImpl method double checks to make sure it is not
already in maintenance mode (from some other queued command). Assuming no problems,
the method blankSignNow is called to request FMS to actually blank the sign, update the
database, and handle any status change, and push a CurrentDMSStatus event into the event
channel, so that any user can immediately see that the sign is now blank. Regardless of
whether blankSignNow works, the method continues on, since the sign may likely be non-
functional when it is put in maintenance mode. The DMSStatus is updated to show that the
sign is in maintenance mode, it is persisted to the database, and it is pushed into the event
channel. The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-74 04/17/01

delete

interrupt(token)

execute

putInMaintModeImpl

[already in maint mode]
completed("already in maint mode")

CommandQueue executes
command asynchronously.

PutDMSInMaintModeCmd

DMSArbitrationQueue

create

[resource conflict]
ResourceControlConflict

blankSignNow
(cmdStat)

checkAccess(token)

FMS PushEventSupplier

ORB

Chart2DMSImpl CommandStatus

DMSEvent

OperationsLogDMSControlDBTokenManipulator

[no rights]
AccessDenied

[already in maint mode]
completed("arealdy in maint mode")[already in maint mode]

CHART2Exception

push(CurrentDMSStatus)

putInMaintMode(token, cmdStat)

update("command queued")

completed("now in maint mode")

[no rights]
completed("no rights")

setStatus(m_status)

create "Any" DMSEvent of type CurrentDMSStatus

log(token, "DMS put in maint mode")

[resource conflict]
ResourceControlConflict

normal return

[resource conflict]
completed("resorce conflict")

We continue on regardless of whether blankSignNow() works. We don't want
to stop a sign from going into maintenance mode because it doesn't work.

Interrupt the ArbitrationQueue
immediately so it doesn't try to
put any more messages on the sign
(even though the TakeDMSOffline
command might not be executed
for a while).

CommandQueue

update("putting in maint mode")

addCommand(PutDMSInMaintModeCmd)

m_status.m_opStatus =
MAINT_MODE

[already in maint mode]
[alreaady in maint mode]

Figure 50. DMSControlModule:PutDMSInMaintMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-75 04/17/01

3.6.2.16 DMSControlModule:PutDMSOnline (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go online. The requesting operator must have proper functional rights, and if there is
a (maintenance mode) message on the sign from another operations center, the user must
have override authority. And of course the sign must not online already, otherwise the
request is redundant. A PutDMSOnlineCmd (a QueueableCommand) is created and added
to the DMS’s CommandQueue. The CommandQueue is required since field
communications to the sign are relatively slow and can queue up. When the
CommandQueue is ready, it executes the PutDMSOnlineCmd, which calls the
putOnlineImpl method, also shown on this diagram. The putOnlineImpl method double
checks to make sure it is not already online (from some other queued command). Assuming
no problems, the method blankSignNow is called to request FMS to actually blank the sign,
update the database, and handle any status change, and push a CurrentDMSStatus event
into the event. If blankSignNow does not work, the sign cannot be brought online, and the
method ends. The DMSStatus is updated to show that the sign is online, it is persisted to the
database, and it is pushed into the event channel. Finally the ArbitrationQueue is resumed,
so that it can evaluate its queue and determine if it has a message to display on the sign. The
requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-76 04/17/01

delete

Operator
Chart2DMSImpl TokenManipulator

PutDMSOnlineCmd

DMSArbitrationQueueImpl

CommandQueue executes
command asynchronously.

putOnline(token, cmdStat))
checkAccess(token)

[no rights]
completed("no rights")

[no rights]
AccessDenied

[already online]
completed("already online")[already online]

CHART2Exception

create

addCommand(PutDMSOnlineCmd)

[already online]
[already online]

update("putting online")

blankSignNow
(cmdStat)

[failure]
completed("could not blank sign")

setStatus(m_status)

resume

create "Any" DMSEvent of type DMSStatusChanged

push (DMSStatusChanged)

return from putOnlineImpl()

log(token, "DMS put online")

OperationsLogCommandQueue

If we can not even blank the sign,
no point in putting it online. Return.

[no rights]
log(token, "unauth. attempt to put DMS <name> online")

checkResourceConflict
(token, cmdStat)

update("command queued")

[failure]
[failure]

CommandStatuscreate

delete

completed("success")

m_status.m_opStatus
= ONLINE

Tell the Arb Queue to start re-evaluating its queue
to see if it has something to put on the sign.

execute
putOnlineImpl

DMSEvent

[already online]
completed("already online")

PushEventSupplier

Updates cmdStatus
if conflict found
(completed() call).

Updates
cmdStat

DMSControlDB

Figure 51. DMSControlModule:PutDMSOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-77 04/17/01

3.6.2.17 DMSControlModule:RemoveDMS (Sequence Diagram)

This Sequence Diagram shows how the DMSFactoryImpl removes a DMS from the system
on behalf of an operator. A DMS must be offline to be removed, and the requesting
operator must posess the proper functional rights. The DMSFactory remove the reference to
the DMSImpl from its internal list of DMSs, remove the DMSImpl and its associated
information from the database removes it from the FMS subsystem, and withdraws the
DMS’s offer from the trading service. A DMSDeletedEvent is then pushed into the event
channel.

TokenManipulator

withdraw

deactivate_object

[not offline]
Chart2Exception

Chart2DMSImpl DMSControlDBChart2DMSFactoryImpl CosTrading.Register POAFMS PushEventSupplier OperationsLog

ORB

removeDMS (FMS Device ID)

deleteDMS (DMS ID)

log(token, "DMS <name> removed")

push (DMSDeleted)

remove

[not found]
Chart2Exception

removeDMS

checkAccess [no rights]
log(token, "unauth. attempt to remove DMS <name>")[no rights]

AccessDenied

[not found]
Chart2Exception

CommandQueue

shutdown

Figure 52. DMSControlModule:RemoveDMS (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-78 04/17/01

3.6.2.17.1 DMSControlModule:ResetController (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl responds to a request to reset a
DMS. The DMS must be in maintenance mode, the requesting operator must have proper
functional rights, and if there is a (maintenance mode) message on the sign from another
operations center, the user must have override authority. This method creates a
ResetDMSCmd (a QueueableCommand) and adds it to the DMS’s CommandQueue. The
CommandQueue is required since field communications to the sign are relatively slow and
can queue up. Requests to communicate with the sign are processed on a first-come, first-
served basis. When the CommandQueue is ready, it executes the ResetDMSCmd, which
calls the resetControllerImpl method, also shown on this diagram. When the
resetControllerImpl method runs, it checks that the DMS is still in maintenance mode (a
previously queued command could have changed it), and that there is no resource conflict
(a previously queued command could have written a message from an operator at another
operations center). Assuming no problems, the method blankSignNow is called to request
FMS to actually change the sign, update the database, and handle any status change, and
push a CurrentDMSStatus event into the event channel, so that any user (with rights) can
immediately see that the sign is now blank. Then the FMS is requested to reset the device
with the FMS’s resetController method. The requesting user is kept abreast of progress of
the request all the while, via a CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-79 04/17/01

Happens if user from
another op ctr has msg
on DMS in maint mode.

resetControllerImpl

update("resetting sign")

resetController

[resource conflict]
ResourceControlConflict

[no rights]
AccessDenied

[not in maint mode]
CHART2Exception

FMS

ResetDMSCmd

CommandQueue executes
command asynchronously.

Operator Chart2DMSImpl CommandQueue DMSControlDB

create

resetController

[not in maint mode]
completed("wrong mode")

[no rights]
completed("no rights")

create

update("command queued")

addCommand

TokenManipulator

checkAccess

blankSignNow updates
cmdStatus & DB as necessary.

We continue with the attempt to reset the controller
regardless of whether blankSignNow() works.
(Perhaps they are resetting the DMS because they
can't write to it.)

checkResourceConflict
(token, cmdStatus)

blankSignNow(cmdStatus)

delete

delete

execute

[resource conflict]
ResourceControlConflict

CommandStatus

completed("success or failure")

[not in maint mode]
completed("wrong mode")[not in maint mode]

CHART2Exception("wrong mode")

checkResourceConflict
(token, cmdStatus)

Updates cmdStatus
if conflict found.Can happen based

on execution of queued
up commands.

Updates cmdStatus
if conflict found.

getStatus

Figure 53. DMSControlModule:ResetController (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-80 04/17/01

3.6.2.18 DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

This Sequence Diagram shows how the CheckCommLossTask object executes its task
when directed to run by the Java timer object. The run method of CheckCommLossTask
calls the checkCommLoss method of CHART2DMSFactoryImpl, which calls
checkCommLoss on each DMS. Each CHART2DMSImpl object immediately returns if its
m_lastContactTime variable indicates that it has had some (any) communication with the
device within the Comm Loss Timeout period. If the timeout has been exceeded and there
was a message on the sign, the CHART2DMSStatus is updated to reflect a blank message
and no controlling operations center, this fact is logged, and the new status is persisted and
pushed into the event channel. (If the timeout has been exceeded, but there is no message
on the sign, there is nothing to do and no one to notify. The COMM_FAILURE status has
already been detected, on the first failed poll if nothing else.)

Even if we've exceeded the timeout, if there is no message on
the sign, there is nothing to do.[no message on sign]

We have not had any contact with the sign for the dmsTimeCommLoss period, and there is a message on the sign which now
needs to be blanked. At this time we consider the sign to be blanked -- whether or not the sign supports a capability to blank
itself after a comm loss timeout period -- because when the sign comes back online after being out of contact this long we will
blank it anyway.

java.util.Timer

CheckCommLossTask

run()

Chart2DMSFactoryImpl Chart2DMSImpl OperationsLog

log("comm loss timeout exceeded, sign assumed blank")

DMSControlDB

DMSEvent

PushEventSupplier

checkCommLoss()

[*for each
DMS]

checkCommLoss()

setDMSStatus(m_id, m_status)

If we've had contact within the comm loss timeout period, return.

create "Any" DMSEvent of type CurrentDMSStatus

push(CurrentDMSStatus)

m_status:
Chart2DMSStatus DMSArbitrationQueueImpl

[now - m_lastContactTime <
m_config.m_dmsTimeCommLoss]

setDMSMessage(blank)
setControllingOpCenter(none)

asyncMsgBlank

Figure 54. DMSControlModule:RunCheckCommLossTask (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-81 04/17/01

3.6.2.19 DMSControlModule:RunCheckForAbandonedDMSTask (Sequence Diagram)

This Sequence Diagram shows how the CheckForAbandonedDMSTask object executes its
task when directed to run by the Java timer object. The run method of
CheckForAbandonedDMSTask gets the controlling op center of each DMS and builds a list
of OperationsCenter objects with control one or more signs. Each OperationsCenter is then
queried for the number of users logged in. If the number of users at an OperationsCenter is
zero, this fact is logged and an UnhandledControlledResources event is pushed into the
event channel.

CheckForAbandonedDMSTask

run()

OperationsLog
java.util.Timer

Chart2DMSFactoryImpl DMSImpl CosTrading.Lookup

OperationsCenter

PushEventSupplier

[no users]
push (UnhandledControlledResourcesEvent)

[no users]
log

checkForAbandonedDMS()

[*for each unique op ctr ID]
query(op center where ID = op center IDs)

[*for each DMS]
getControllingOpCenter

getNumLoggedInUsers
[*for each

op ctr
which

controls
at least

one DMS]

Figure 55. DMSControlModule:RunCheckForAbandonedDMSTask (Sequence

Diagram)

R1B2 Servers Detailed Design Rev. 0 3-82 04/17/01

3.6.2.20 DMSControlModule:RunPollDMSTask (Sequence Diagram)

This Sequence Diagram shows how the PollDMSTask object executes its task when
directed to run by the Java timer object. The run method of PollDMSTask calls the
pollDMSes method of CHART2DMSFactoryImpl, which calls pollIfNecessary on each
DMS. Each CHART2DMSImpl object immediately returns if its m_lastContactTime
variable indicates that it has had some (any) communication with the device within the poll
interval period. If it has been longer than the poll interval since the last communcation with
the device, this method creates a PollDMSNowCmd (a QueueableCommand) and adds it to
the DMS’s CommandQueue. The CommandQueue is required since field communications
to the sign are relatively slow and can queue up. Requests to communicate with the sign are
processed on a first-come, first-served basis. Most likely, the CommandQueue is empty
(which is why a need to poll is indicated), but any communication with the device will have
the desired effect. If there are one or more requests to communicate with the device on the
queue ahead of this PollDMSNowCmd, that is acceptable, too. When the CommandQueue
is ready, it executes the PollDMSNowCmd, which calls the pollNowImpl method.

CommandStatus

Return immediately if we have
had any communications with
the device within the poll interval.

run()
pollDMSes()

create PollDMSNowCmd

Each CommandQueue executes
its commands asynchronously.

For details, see sequence diagram
DMSControlModule:pollNowImpl.

"give token rights to poll"

pollIfNecessary(token, cmdStatus)

[now - m_lastContactTime < m_config.m_pollInterval]

create

addCommand(PollDMSNowCmd)

execute
pollNowImpl

delete

java.util.Timer

PollDMSTask Chart2DMSFactoryImpl TokenManipulator Chart2DMSImpl CommandQueue

AccessToken

[*for
each
DMS

Dummy CommandStatus object. No human or process
is watching it, but the pollDMSNowCmd still needs one.

Figure 56. DMSControlModule:RunPollDMSTask (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-83 04/17/01

3.6.2.21 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl responds to a request to change
the configuration of a DMS. The DMS must be in maintenance mode, the requesting
operator must have proper functional rights, and if there is a (maintenance mode) message
on the sign from another operations center, the user must have override authority. This
method creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS’s
CommandQueue. The CommandQueue is required since some configuration changes
require field communications to the sign, and field communications are relatively slow and
can queue up. Requests to communicate with the sign are processed on a first-come, first-
served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd,
which calls the setConfigurationImpl method, also shown on this diagram. When the
setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a
previously queued command could have changed it), and that there is no resource conflict
(a previously queued command could have written a message from an operator at another
operations center). Assuming no problems, the CHART2DMSConfiguration is locked
down, and all parameters that need to change are changed. If any of these parameter
changes require communications to the sign (e.g., setting the Comm Loss Timeout in an
FP9500), FMS is requested to make the specified change(s). The method handleOpStatus
handles and responds to any changes to the operational status of the sign (OK, comms
failure, or hardware failure) reported by FMS during this operation. The requesting user is
kept abreast of progress of the request all the while, via a CommandStatus object viewable
by the user.

R1B2 Servers Detailed Design Rev. 0 3-84 04/17/01

Can happen based on
execution of previously
queued commands.

Writes to CommandStatus
if necessary.

checkResourceConflict
(token, cmdStatus)

[resource conflict]
ResourceControlConflict

Updates CommandStatus
(completed() call)
if necessary.

[not in maint mode]
completed("wrong mode")

execute

[resource conflict]
ResourceControlConflict

updateConfiguration

SetDMSConfigCmd

create

checkResourceConflict
(token, cmdStatus)

delete

end synchronize

DMSEvent

m_dmsConfig:
Chart2DMSConfiguration PushEventSupplier OperationsLogDMSControlDB

If any changes
require comms to
sign,e.g., for
FP9500, derived class
implementation will
do more, such as this.

create

setConfigurationImpl

update("setting config")

FMSCommandQueue

CommandQueue executes
command asynchronously.

addCommand(SetDMSConfigCmd)

update("command queued")

Happens if user from
another op ctr has msg
on DMS in maint mode.

[not in maint mode]
CHART2Exception

"set data as requested"

[not in maint mode]
CHART2Exception

completed("success or failure")

log(token, "DMS <name>, "configuration changed")

Operator

Chart2DMSImpl

CommandStatus

setConfiguration
(token, config)

[no rights]
completed("no rights")[no rights]

AccessDenied

If any changes
actually occured...

[change to commLossTimeout requested]
dmsSetConfig(m_config)

handleOpStatus
(result, cmdStatus)

create "Any" DMSEvent of type DMSConfigChanged)

[not in maint mode]
completed("wrong mode")

[no change to existing config]
completed("nothing changes")

[no change to existing config]
[no chng]

synchronized

push (DMSConfigChanged)

Figure 57. DMSControlModule:SetConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-85 04/17/01

3.6.2.22 DMSControlModule:SetMessage (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
change its message in maintenance mode. (For setting messages online, see
SetMessageFromQueue.) The DMS must be in maintenance mode, and the requesting
operator must have proper functional rights. This method asks the message to validate itself
one last time (for banned words, and to ensure that the beacons are not set on with an empty
message). Then a SetDMSMessageCmd (a QueueableCommand) is created and added to
the DMS’s CommandQueue. The CommandQueue is required since field communications
to the sign are relatively slow and can queue up. Requests to communicate with the sign are
processed on a first-come, first-served basis. When the CommandQueue is ready, it
executes the SetDMSMessageCmd, which calls the setMessageImpl method. The
requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

This method is used in
maintenance mode only.
SetMessageFromQueue is
used online.

SetDMSMessageCmd

CommandQueue

CommandQueue executes
command asynchronously.

For details, see sequence diagram
DMSControlModule:setMessageImpl.

create

addCommand(SetDMSMessageCmd)

update("command queued")

OperationsLog

[no rights]
log(token, "unauth. attemp to set DMS <name> to message <text>t")

Updates cmdStat
if conflict found
(completed() call).

checkResourceConflict
(token, cmdStat)

[resource conflict]
ResourceControlConflict

execute

ORB

Chart2DMSImpl TokenManipulatorCommandStatus Message

setMessageImpl

setMessage(token,
msg, cmdStat)

checkAccess(token)
[no rights]

completed("no rights")

[no rights]
AccessDenied

[not in maint mode]
completed("wrong mode")[not in maint mode]

CHART2Exception

validateMessageContent
[bad words, or beacons on with no msg]

completed("invalid message or beacons")[bad words or beacons]
DisapprovedMessageContent

Figure 58. DMSControlModule:SetMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-86 04/17/01

3.6.2.23 DMSControlModule:SetMessageFromQueue (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object processes a request to
change its message while it is online. (For setting messages in maintenance mode, see
setMessage.) This thread is actually initiated in the ArbitrationQueue’s AddEntry method.
The ArbitrationQueue’s evaluateQueue method calls this method. The DMS must still be
online. The operator’s functional rights have already been validated. This method creates a
SetDMSMessageFromQueueCmd (a QueueableCommand) and adds it to the DMS’s
CommandQueue. The CommandQueue is required since field communications to the sign
are relatively slow and can queue up. When the CommandQueue is ready, it executes the
SetDMSMessageFromQueueCmd, which calls the setMessageFromQueueImpl method.
The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

This method used
online only. In maint
mode, setMessage
is used.

For details, see sequence diagram
DMSControlModule:SetMessageFromQueueImpl.

setMessageFromQueueImpl

delete

DMSArbitrationQueueImpl

Chart2DMSImpl CommandStatus

setDMSMsgFromQueueCmd

Message CommandQueue

CommandQueue executes
command asynchronously.

setMessageFromQueue(token, msg, cmdStat, reqID)
[not online]

completed("wrong mode")

validateMessageContent
[bad words, or beacons on with no msg]

completed ("invalid msg or beacons")

create

addCommand(SetDMSMsgFromQueueCmd)

update("command queued")

execute

[not online]
CHART2Exception("wrong mode")

[bad words, or beacons on with no msg]
CHART2Exception("invalid msg or beacons")

Figure 59. DMSControlModule:SetMessageFromQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-87 04/17/01

3.6.2.24 DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object executes a command to
change its message while it is online. (The analogous method in online mode is
setMessageImpl.) A request to set the message has already been received and pre-processed
by the setMessageFromQueue method. When the setMessageFromQueueImpl method runs,
it checks that the DMS is still online (a previously queued command could have changed
it), that the user has rights, and that there is no resource conflict (a previously queued
command could have written a message from an operator at another operations center).
Assuming no problems, FMS is reqeuested to change the sign. If it succeeds, the controlling
operations center is updated as necessary, and the database is updated with the new
information. The requesting user is kept abreast of progress of the request all the while, via
a CommandStatus object viewable by the user. A CurrentDMSStatus event is pushed into
the event channel, so that any user (with rights) can immediately see the new content of the
sign. The method handleOpStatus handles and responds to any changes to the operational
status of the sign (OK, comms failure, or hardware failure) reported by FMS during this
operation. The ArbitrationQueue is informed of the result of this operation via the
requestFailed or requestSucceeded method (at which time the ArbitrationQueue may re-
evaluate its own queue and request another change to the sign).

This method is used only when online. In maint
mode, setMessage/setMessageImpl is used.

DMSEvent

PushEventSupplier

create "Any" DMSEvent of type CurrentDMSStatus

push(CurrentDMSStatus)

completed("success")

DMSArbitrationQueueImpl

[failure]
requestFailed(reqID, false, "comms failure")

[failure]

requestSucceeded(reqID)

m_status:
Chart2DMSStatus

Chart2DMSImpl
Chart2DMSImpl CommandStatus

setCurrentMessage(msg that was set)

[not online]
completed("wrong mode")

[not online]

update("setting message")

setStatus(m_id, m_status)

handleOpStatus
(result, cmdStatus)

setControllingOpCenter(op ctr from token)

Updates cmdStatus, updates & pushes
new DMSStatus if necesary.

DMSControlDB

setMessageFromQueueImpl(token, msg,
cmdStatus, reqID)

dmsSetMessage(m_id, agent, community, multiMsg, forever, my addr, beacon)

log(token, "DMS <name> message set to <text>")

[failure]
completed("failure")

FMS OperationsLog

Figure 60. DMSControlModule:SetMessageFromQueueImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-88 04/17/01

3.6.2.25 DMSControlModule:SetMessageImpl (Sequence Diagram)

m_status:
Chart2DMSStatus FMSPushEventSupplier

SetDMSMessageCmd

Chart2DMSImpl CommandStatus DMSControlDB

setMessageImpl
(token, multiMsg, beacon, cmdStatus)

[DMS not in maint mode]

[not in maint mode]
completed("wrong mode")

[resource conflict]

setStatus(m_status)

dmsSetMessage(m_id, agent, community, multiMsg, forever, addr, beacon)

push (CurrentDMSStatus)
completed

[success]
log(token, "DMS <name> message set to <text>")

OperationsLog

handleOpStatus
(result, cmdStatus)

TokenManipulator

getOpCenter(token)

DMSEventcreate "Any" DMSEvent of type CurrentDMSStatus

Updates cmdStatus
(completed() call)
if conflict found.

checkResourceConflict
(token, cmdStatus)

DMSMessage

setControllingOpCenter(op ctr)

[failure]

setCurrentMessage(msg)

create(multiMsg, beacon)

This method is used in maint mode only. Online,
setMessageFromQueue/setMesageFromQueueImpl
is used.

Updates cmdStatus, updates & pushes
new DMSStatus if necesary.

Figure 61. DMSControlModule:SetMessageImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-89 04/17/01

3.6.2.26 DMSControlModule:Shutdown (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is terminated. The
DMSControlModule is shut down by the ServiceApplication that started it. When told to
shut down, the DMSControlModule disconnects the DMSFactory from the ORB,
withdraws its offer from the trader, and shuts down the object. When the DMSFactory is
shut down, it withdraws the offers of each DMS and disconnects each DMS from the ORB.
No information needs to be persisted to the database during shutdown, as information is
written to the database as it is updated.

cancel

delete

shutdown

deactivate_object (DMSFactory)

java.util.Timer POA

ServiceApplication

DMSControlModule DMSFactoryImpl Chart2DMSImpl

deactivate_object(DMS)

shutdown

delete

delete

[*for
each
DMS]

Figure 62. DMSControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-90 04/17/01

3.6.2.27 DMSControlModule:TakeDMSOffline (Sequence Diagram)

This Sequence Diagram shows how a CHART2DMSImpl object responds to a request by a
user to go offline. The requesting operator must have proper functional rights, and if there
is a message on the sign from another operations center, the user must have override
authority. And of course the sign must not offline already, otherwise the request is
redundant. The ArbitrationQueue is interrupted, so that it will stop attempting to modify the
sign (as it does in online mode). A TakeDMSOfflineCmd (a QueueableCommand) is
created and added to the DMS’s CommandQueue. The CommandQueue is required since
field communications to the sign are relatively slow and can queue up. When the
CommandQueue is ready, it executes the TakeDMSOfflineCmd, which calls the
takeOfflineImpl method, also shown on this diagram. The takeOfflineImpl method double
checks to make sure it is not already offline (from some other queued command). Assuming
no problems, the method blankSignNow is called to request FMS to actually blank the sign,
update the database, and handle any status change, and push a CurrentDMSStatus event
into the event channel, so that any user (with rights) can immediately see that the sign is
now blank. Regardless of whether blankSignNow works, the method continues on, since
the sign may likely be non-functional when it is taken offline. The DMSStatus is updated to
show that the sign is offline, it is persisted to the database, and it is pushed into the event
channel. The requesting user is kept abreast of progress of the request all the while, via a
CommandStatus object viewable by the user.

R1B2 Servers Detailed Design Rev. 0 3-91 04/17/01

create "Any" DMSEvent of type CurrentDMSStatus

blankSignNow
(cmdStat)

push(CurrentDMSStatus)

[no rights]
AccessDenied

[already offline]
completed("already offline")

[no rights]
completed("no rights")

create

Interrupt the ArbitrationQueue
immediately so it doesn't try to
put any more messages on the sign
(even though the TakeDMSOffline
command might not be executed
for a while).

We continue on regardless of whether blankSignNow() works. We don't want
to stop a sign from going offline because it doesn't work.

setStatus(m_status)

CommandQueue executes
command asynchronously.

DMSEvent

[already offline]
[already offline]

TokenManipulator DMSArbitrationQueueImpl

checkAccess

interrupt(token)

[resource conflict]]
ResourceControlConflict

update ("taking offline")

addCommand(TakeDMSOfflineCmd)

execute

[no rights]
log(token, "unauth. access attempt")

[alreadly offline]
completed("already offline")

completed("sign offline")

delete

takeOffline(token, cmdStat)

[already offline]
Chart2Exception(offline)

Chart2DMSImpl FMS PushEventSupplierOperationsLog DMSControlDBCommandStatus

TakeDMSOfflineCmd

CommandQueueORB

takeOfflineImpl

log(token, "DMS taken offline")

[resouce conflict]
completed("resource conflict")

[resource conflict]
ResourceConflict

update("command queued")

(normal return)

m_status.m_opStatus
= OFFLINE

Figure 63. DMSControlModule:TakeDMSOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-92 04/17/01

3.7 DMSUtility

3.7.1 Classes

3.7.1.1 DMSUtility (Class Diagram)

This Class Diagram shows classes related to the DMS that are used by both the GUI and the
DMS service. Most of these classes are implementations of value type classes defined in the
system interfaces (IDL).

FP9500Status

Chart2DMSStatus

Chart2DMSConfiguration

DMSRPIData DMSPlanItemData

Chart2DMSStatusImpl
Chart2DMSConfigurationImpl

DMSRPIDataImpl
DMSPlanItemDataImpl

DMSMessage

DictionaryWrapper

DMSMessageImpl
1 1

FP9500Configuration

FP9500ConfigurationImpl

Message

DMSStatus DMSConfiguration

FP9500StatusImpl

factory createChart2DMSConfiguration() : Chart2DMSConfiguration

long m_fmsDeviceID
Identifier m_owningOrgID
string m_agentHostName
string m_SNMPCommunityName
long m_pollInterval
long m_pollCycleDuration
string m_devicePhoneNumber
string m_deviceCommString
DeviceModelID m_deviceModelID
long m_deviceDropAddress
long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

getDMS() : Chart2DMS
getMessage() : DMSMessage
setDMS(Chart2DMS) : void
setMessage(DMSMessage) : void
factory create DMSRPIData() :
 DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

getDMSID() : Identifier
setDMS(DMS) : void
getMessageID Identifier
setMessage (StoredMessage) : void

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMessage
Identifier m_storedMsgID

getBeaconState() : octet
getMultiString() : MULTIString
getMinimumCharacters() : long
factory createDMSMessage(MULTIString multiStringMessage,
 octet beaconState) : DMSMessage

octet m_dmsMessageBeacon
MULTIString m_dmsMessageMultiString

get():DictionaryWrapper
setWrapperSettings(ORB, CosTrading.Lookup):void
setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

-CosTrading.Lookup m_trader
-ORB m_orb
-java.util.Vector m_dictionaries
-java.lang.Object m_lock
long m_lastTraderLookupTimestamp

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum
octet m_currentMsgSource

factory createChart2DMSStatus() : Chart2DMSStatus

Identifier m_controllingOpCenterID
string m_controllingOpCenterName
NetworkConnectionSite m_NetworkConnectionSite

validateMessageContent():void;

Figure 64. DMSUtility (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-93 04/17/01

3.7.1.1.1 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to CHART II
processing. Such information includes how to contact the sign under CHART II software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.7.1.1.2 CHART2DMSConfigurationImpl (Class)

The CHART2DMSConfigurationImpl class provides an implementation for the abstract
CHART2DMSConfiguration class. It implements get and set methods to access and modify
values of the configuration of a DMS. The configuration information stored here is
normally fairly static: things like the size of the sign in characters and pixels, its name and
location, and how to contact the sign (as opposed to dynamic information like the current
message on the sign, which is stored in an analogous Status object).

3.7.1.1.3 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART II processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.7.1.1.4 CHART2DMSStatusImpl (Class)

The CHART2DMSStatusImpl class provides an implementation for the abstract
CHART2DMSStatus class. It implements get and set methods to access and modify values
of the status of a DMS. The status information stored here is relatively dynamic: things like
the current message on the sign, its beacon state, its current operational mode (online,
offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or
HARDWARE_FAILURE) and controlling operations center. (More static information
about the sign, such as its size and location, is stored in an analogous Configuration object.)

3.7.1.1.5 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA

R1B2 Servers Detailed Design Rev. 0 3-94 04/17/01

failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.7.1.1.6 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and is stored within
a DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.7.1.1.7 DMSMessageImpl (Class)

The DMSMessageImpl class provides an implementation for the abstract DMSMessage
class. It implements get and set methods to access and modify the MULTI-formatted
message and beacon state values which make up a DMS message.

3.7.1.1.8 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanItemData.

3.7.1.1.9 DMSPlanItemDataImpl (Class)

The DMSPlanItemDataImpl class provides an implementation for the abstract
DMSPlanItemData class. It implements get and set methods to access and modify values relative
to a stored Plan Item for a DMS, which associates a stored message to a specific DMS it should
be placed on.

3.7.1.1.10 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.7.1.1.11 DMSRPIDataImpl (Class)

The DMSRPIDataImpl class provides an implementation for the abstract DMSRPIData
class. It implements get and set methods to access and modify values relative to a Response
Plan Item for a DMS.

3.7.1.1.12 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an

R1B2 Servers Detailed Design Rev. 0 3-95 04/17/01

FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

3.7.1.1.13 FP9500ConfigurationImpl (Class)

The FP9500ConfigurationImpl class provides an implementation for the abstract
FP9500Configuration class. It implements get and set methods to access and modify values
specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a
whole suite of subclasses specific to a specific brand and model of sign for manufacturer-
specific configuration information.

3.7.1.1.14 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the CHART2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the the FP9500 model would include things like the current message number and
current message source, status bits, light status, pixel failure map, and so on.

3.7.1.1.15 FP9500StatusImpl (Class)

The FP9500StatusImpl class provides an implementation for the abstract FP9500Status
class. It implements get and set methods to access and modify values specific to the
dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole
suite of subclasses specific to a specific brand and model of sign for manufacturer-specific
status information.

3.7.1.1.16 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

R1B2 Servers Detailed Design Rev. 0 3-96 04/17/01

3.8 HARControlModule

3.8.1 Classes

3.8.1.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR)
devices in the CHART II system. Details are only shown for classes that exist specifically
for HAR control. Auxillary classes used from other various utility or system interface
packages are shown by name only.

HARRefreshDateTimeCmd

1

1

2 1
java.util.Timer

UpdateDateTimeFieldsTask

CheckControlledResourcesTask

java.util.TimerTask

HARSlotManager

1

1

1 1

1

HARAudioClipManager

1

*

HARSetConfigurationCmd

ISSAP55HAR

1

1

* 1
HARMsgNotifierWrapper

HARMessageNotifier

DBConnectionManager

1

1

1

HARControlModuleProperties

1

1

1

*

1

1

2

1

1

*

HARControlModule

ServiceApplicationModule

1

1

*

1

1

1

CommandQueue

1

1

*

1

1

1

Chart2HAR

HAR

Chart2HARImpl

Chart2HARFactoryImpl

Chart2HARFactory

SharedResource SharedResourceManager

UniquelyIdentifiable CommEnabled GeoLocatable

Chart2HARConfiguration

Chart2HARStatus

1 1

1

1

1

1

1

1

1

1

CommandStatusWatcher
monitors msg
notifier commands
using

1

1

QueueableCommand

HARSetMsgCmd HARBlankCmd

HARResetCmd HARSetupCmd

HARPutOnlineCmd HARTakeOfflineCmdHARPutInMaintModeCmd

HARSetTransmitterOnCmd

HARStoreSlotMsgCmd

HARDeleteSlotMsgCmd

HARSetTransmitterOffCmd

HARControlDB

PushEventSupplier

ServiceApplication

1

TimerUpdatable

1

1

1

1

*

ArbitrationQueueImplOld

HARArbitrationQueueImpl

Chart2HARFactoryImpl m_factory

Chart2HARFactoryImpl m_factory

Chart2HAR m_har
CommandStatus m_status
byte[] token
HARMessage m_toBeUpdated

store(HARMessageClipList,
 HARSlotUsageIndicator,
 long slot):long
remove(long slot):void
storeImmediateMsg(HARMessage):slot[]
removeImmediateMsg():void
restoreAll():void
getCurrentUsage():HARSlotDataList

HARMsgNotifierWrapper(byte[] ID)
getID():byte[]
putInMaintenanceMode():void
takeOffline():void
isHARNoticeActive():boolean
activateHARNotice(AccessToken,
 TrafficEvent,
 CommandStatus):void
deactivateHARNotice(AccessToken,
 TrafficEvent,
 CommandStatus):void
-getRefFromTrader():HARMessageNotifier

byte[] m_notifierID
HARMessageNotifier m_notifier

Chart2HAR m_har
CommandStatus m_status
byte[] token
Chart2HARConfiguration m_config

checkDateTimeFields()

long[] m_currentMessageSlots;
boolean m_updateDateTimeFailed;

removeHAR(Identifier id):void
shutdown():void
doSharedResourcesCheck():void
doDateTimeFieldCheck():void

-java.lang.Vector m_harList;

Chart2HAR m_har
CommandStatus m_status
byte[] token
boolean m_maintMode
long m_requestID

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token

Chart2HAR m_har
CommandStatus m_status
byte[] token
long m_slotNumber
HARMessage m_msg

Chart2HAR m_har
CommandStatus m_status
byte[] token
long m_slotNumber Chart2HAR m_har

CommandStatus m_status
byte[] token

HARControlDB(db)
getObjects():HARImpl[]
getConfiguration(AccessToken):Chart2HARConfiguration
getStatus(Identifier):Chart2HARStatus
insertHAR(Chart2HARConfiguration):void
removeHAR(harID):void
updateConfiguration(Identifier, Chart2HARConfiguration):void
updateStatus(Identifier, Chart2HARStatus):void

DBConnectionMgr m_db

getSharedResMonIntSecs():long
getDateTimeFieldRefreshMins():long
getHARFactoryID():Identifier
getAudioClipManagerID():Identifier
getMaxNumStreamingThreads():long

evaluateQueue():void

getDictionary():Dictionary
-registerTraderTypes():void

Chart2HAR m_har;
CommandStatus m_status
byte[][] m_notifiersToActivate
boolean m_maintMode
boolean m_dateTimeRefresh
byte[] m_opCenterID
String m_opCenterName
Message m_msg
long m_requestID
byte[] token

getConnection():java.sql.Connection
releaseConnection();
shutdown();

Figure 65. HARControlModule (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-97 04/17/01

3.8.1.1.1 CHART2HAR (Class)

The CHART2HAR class is an extension of the HAR that is aware of CHART2 business
rules, such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.8.1.1.2 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART II specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.8.1.1.3 CHART2HARFactory (Class)

This interface defines objects capable of creating CHART2HAR objects. This factory is
also responsible for monitoring the HARs as shared resources and must report when a HAR
that is currently broadcasting a message (other than the default) does not have a user logged
into the system that is from the controlling operations center.

3.8.1.1.4 CHART2HARFactoryImpl (Class)

This class implements the CHART2HARFactory interface as defined by the IDL specified
in the System Interfaces section.

3.8.1.1.5 CHART2HARImpl (Class)

This class implements CHART2HAR as defined by IDL specified in the System Interfaces
section.

3.8.1.1.6 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART II processing and extends beyond the status related to typical HAR
device control.

3.8.1.1.7 CheckControlledResourcesTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in
this class is called, it calls the CHART2HARFactoryImpl’s doSharedResourcesCheck()
method, which causes the factory to evaluate each HAR in the factory and determine if all
HARs with a controlling op center have at least one user logged in at the op center.

3.8.1.1.8 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in

R1B2 Servers Detailed Design Rev. 0 3-98 04/17/01

first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.8.1.1.9 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.8.1.1.10 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.8.1.1.11 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.8.1.1.12 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.8.1.1.13 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

R1B2 Servers Detailed Design Rev. 0 3-99 04/17/01

3.8.1.1.14 HARArbitrationQueueImpl (Class)

This class extends the ArbitrationQueueImpl to provide an implementation of its
evaluateQueue() abstract method. The implementation of evaluateQueue creates a
HARSetMsgCmd command and adds it to an ArbQueueMsg when a message added to the
queue is to be activated on the HAR.

3.8.1.1.15 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique ID and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean-up of the clip when it is no longer needed.

3.8.1.1.16 HARBlankCmd (Class)

This command object is used to blank the message on the HAR, which involves setting the
message to the HAR’s default message.

3.8.1.1.17 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class
provides the ability to retrieve all HAR information on initialization, update of the
configuration and status information, and insert or remove a HAR device from the system.

3.8.1.1.18 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for
publishing CHART2HAR and CHART2HARFactory objects within a service application.

3.8.1.1.19 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by
objects within the HARControlModule for the current instance of the application. These
settings are read during the module initialization. The module must be re-started to apply
any changes made to the properties file.

3.8.1.1.20 HARDeleteSlotMsgCmd (Class)

This class is used to hold data necessary to execute a request to delete a message from a slot
on the HAR device.

R1B2 Servers Detailed Design Rev. 0 3-100 04/17/01

3.8.1.1.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.8.1.1.22 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This
class handles finding the reference of the notifier object given only the object’s ID. The
object discovery is done at the point of first use or if a currently held reference produces a
CORBA failure when used.

3.8.1.1.23 HARPutInMaintModeCmd (Class)

This class contains data needed to execute a request to put a HAR into maintenance mode.

3.8.1.1.24 HARPutOnlineCmd (Class)

This class contains data needed to execute a request to put a HAR online.

3.8.1.1.25 HARRefreshDateTimeCmd (Class)

This class contains data needed to execute a request to update the date/time fields in a
message that is playing on the HAR device.

3.8.1.1.26 HARResetCmd (Class)

This class contains data needed to execute a request to reset a HAR controller.

3.8.1.1.27 HARSetConfigurationCmd (Class)

This class contains data needed to execute a request to change the configuration values of a
HAR.

3.8.1.1.28 HARSetMsgCmd (Class)

This class contains data needed to execute a request to set the message played on a HAR. A
flag is used to indicate if the message was set via a maintenance mode command or via the
arbitration queue.

R1B2 Servers Detailed Design Rev. 0 3-101 04/17/01

3.8.1.1.29 HARSetTransmitterOffCmd (Class)

This class contains data needed to execute a request to turn off the transmitter of a HAR
device.

3.8.1.1.30 HARSetTransmitterOnCmd (Class)

This class contains data needed to execute a request to turn on the transmitter of a HAR
device.

3.8.1.1.31 HARSetupCmd (Class)

This class contains data needed to execute a request to issue the setup command for the
HAR.

3.8.1.1.32 HARSlotManager (Class)

This class manages the slot usage for the CHART2HARImpl. When a clip is to be stored in
the HAR controller, this class is called instead of calling the ISSAP55HAR directly. This
class ensures the reserved slot numbers (default header, default trailer, default message,
current message) are not overlaid with other clips stored in the controller. When clips are
stored in slots in the controller, this class keeps track of the run-time for each and the total
run time for the device and provides an error when the storage of a clip exceeds the
configured available run time of the device.

This class also helps to manage the condition when multiple slots are needed for the current
(immediate) message. This will be true if the current message consists of 3 or more clips
and a pre-stored clip exists and is preceded and followed by a text or voice clip.

3.8.1.1.33 HARStoreSlotMsgCmd (Class)

This class contains data needed to execute a request to store a message clip into a slot
within the HAR controller.

3.8.1.1.34 HARTakeOfflineCmd (Class)

This class contains data needed to execute a request to take a HAR offline.

3.8.1.1.35 ISSAP55HAR (Class)

This class contains the model specific implementation of HAR features supported by the
Information System Specialists (ISS) AP55 HAR controller. This class stores no data
related to the current state of the device. Instead, this class is used to encapsulate the device
protocol and acts as a utility class to enable an application level class to control the AP55
without communications knowledge.

R1B2 Servers Detailed Design Rev. 0 3-102 04/17/01

This class uses the TelephonyManager to acquire a port when needed. This class must
handle cases when a telephony manager has all ports busy. It could wait for a port to
become available or seek out another telephony manager in the system and attempt to
aquire one of its ports.

3.8.1.1.36 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.8.1.1.37 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.8.1.1.38 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.8.1.1.39 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.8.1.1.40 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-103 04/17/01

3.8.1.1.41 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.8.1.1.42 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.8.1.1.43 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.8.1.1.44 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.8.1.1.45 UpdateDateTimeFieldsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run
method of this class calls the CHART2HARFactoryImpl’s doDateTimeFieldCheck(),
which in turn calls each HAR in the factory to have it determine if it needs to update any
field messages that use date time fields.

R1B2 Servers Detailed Design Rev. 0 3-104 04/17/01

3.8.2 Sequence Diagrams

3.8.2.1 HARControlModule:activateMessageNotifiers (Sequence Diagram)

This diagram shows the processing involved when the HAR needs to activate one or more
of its message notifiers. Because message notifiers process asynchronously, each message
notifier is told to activate or deactivate and a CommandStatusWatcher is used to track the
progress of the notifiers.

HARImpl

HARMessageNotifierWrapper

CommandStatus

CommandStatusWatcher

Message notifier processes
the command asynchronously
and reports progress through
the command status object.

create

[HAR notice is not active]
create

isHARNoticeActive

activateHARNotice

add

completed

[* for each
HARMessageNotifier

specified for activation]

waitForCompletion

See DMSControlModule:activateHARNotice
sequence diagram for details.

Figure 66. HARControlModule:activateMessageNotifiers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-105 04/17/01

3.8.2.2 HARControlModule:addEntry (Sequence Diagram)

The addEntry method defined in the ArbitrationQueue interface is used to put a message on
a HAR when the HAR is online. The ArbQueueProcessing:addEntry sequence diagram
shows the processing that occurs that is generic in nature, for the arbitration queue base
class implementation is shared and is not HAR specific. Part of the base class processing of
addEntry involves calling the evaulateQueue method. Because this method is abstract, the
derived class provides the implementation of this method. In the case of a HAR, the derived
class is a HARArbitrationQueueImpl. The details of the HARArbitrationQueueImpl’s
evaluateQueue processing are shown in the HARControlModule:evaluateQueue sequence
diagram.

Refer to HARControlModule:
evaluateQueue for details.

addEntry

evaluateQueue

ResponsePlanItem
HARArbitrationQueue

Base class performs
processing which eventually
calls the derived class implementation
of the evaluateQueue method. Base
class provides synchronization prior
to the call to evaluateQueue. Refer to
the ArbQueueProcessing:AddEntry
sequence diagram for details.

Figure 67. HARControlModule:addEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-106 04/17/01

3.8.2.3 HARControlModule:blank (Sequence Diagram)

A user with proper functional rights can blank a HAR when it is in maintenance mode. This
command is executed asynchronously by placing a HARBlankCmd on the
CommandQueue. When the command queue executes this command, the blankImpl method
is invoked on the HAR. Refer to the HARControlModule:blankImpl sequence diagram for
details.

create

addCommand

update

execute

blankImpl

Refer to the
HARControlModule:blankImpl
sequence diagram for details.

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

CommandQueue

HARBlankCmd

ORB

Chart2HARImpl CommandStatus

blank

[improper rights]
AccessDenied

[improper rights]
completed

Figure 68. HARControlModule:blank (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-107 04/17/01

3.8.2.4 HARControlModule:blankImpl (Sequence Diagram)

The sequence diagram shows the processing that occurs when a HARBlankCmd is
executed. This command is placed on the command queue by the HAR blank method when
in maintenance mode or by the arbitration queue’s removeEntry method. A flag in the
command object is used to distinguish the origin of the command to allow for the proper
mode check to be done and to allow for specific processing that is to be done when the
HAR is blanked by the arbitration queue.

The HAR is blanked using the ISSAP55HAR object and having it command the HAR to
play the message in its default message slot. If the default message is successfully set to be
played, if any previous immediate message existed it is removed from the HAR slot(s) it
occupied and any recorded voice data used in the previous immediate message is removed
from the system.

[success]
updateStatus

HARArbitrationQueue

[arb queue cmd AND no longer online]
requestFailed

[success AND arb queue cmd]
requestSuccessful

[failure AND arb queue cmd]
requestFailed

[success]
push(HARStatusChanged)

HARBlankCmd

execute

[arb queue cmd AND
no longer online]

completed

[success AND immed msg existed]
[*for each AudioClip in the msg]

removeAudioDataClip

HARAudioClipManager

This cleans up the stored
voice data from recorded
clips that were used in an
immediate message.

deactivateMessageNotifiers

completed

setMessage (default message slot (2))

[maint cmd AND
no longer in maint mode]

completed

update

blankImpl

[success AND immediate message existed]
removeImmediateMsg

[previous immediate msg exists]
deleteClips

HARSlotManager

If previous immediate msg
was using any slots the slots
will be deleted.

ISSAP55HAR
CommandQueue

Chart2HARImpl CommandStatus HARControlDB
PushEventSupplier

(DMSControl)

Figure 69. HARControlModule:blankImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-108 04/17/01

3.8.2.5 HARControlModule:Shutdown (Sequence Diagram)

When the HARControlModule is shut down by the ServiceApplication, it stops its timer
based processing, disconnects its objects from the ORB, and releases any resources it is
using.

ServiceApplication

HARControlModule java.util.Timer Chart2HARFactoryImpl java.lang.Vector POAServiceApplication
PushEventSupplier

(HARControl)
PushEventSupplier

(Resource Management)

shutdown

cancel

shutdown

deactivate_object

remove
[*for each HAR]

deactivate_object

disconnectPushConsumer

disconnectPushConsumer

Figure 70. HARControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-109 04/17/01

3.8.2.6 HARControlModule:createHAR (Sequence Diagram)

A user with the proper functional rights can add a HAR to the system. The HAR object is
created by the HARControlDB object, which takes care of adding the appropriate data to
the database and constructing a CHART2HARImpl object. The factory connects the object
to the ORB, registers it with the ServiceApplication (which causes the object to be
published in the trader), and pushes an event to notify others that a HAR has been added to
the system. The HAR is added in offline mode and therefore no field communications are
necessary.

"add har to list"

ORB

Chart2HARFactoryImpl HARControlDB PushEventSupplier

Chart2HARImpl

POA ServiceApplication

HAR object is created
in OFFLINE mode.

createHAR

[improper rights]
AccessDenied

activate_object

registerObject

push(HARAdded)

insertHAR

create

Chart2HARImpl

Figure 71. HARControlModule:createHAR (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-110 04/17/01

3.8.2.7 HARControlModule:deactivateMessageNotifiers (Sequence Diagram)

This diagram shows the processing that occurs when the HAR deactivates its associated
message notifiers. Because the message notifiers process their deactivate command
asynchronously, the CHART2HARImpl uses a CommandStatusWatcher to monitor the
command status objects passed to each notifier and determine the status of the operation.

HARImpl

HARMessageNotifierWrapper

CommandStatus

CommandStatusWatcher

Message notifier processes
the command asynchronously
and reports progress through
the command status object.

create

[HAR notice is active]
create

isHARNoticeActive

deactivateHARNotice

add

completed

See DMSControlModule:deactivateHARNotice
sequence diagram for details.

[* for each
HARMessageNotifier]

waitForCompletion

Figure 72. HARControlModule:deactivateMessageNotifiers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-111 04/17/01

3.8.2.8 HARControlModule:deleteSlotMessage (Sequence Diagram)

This diagram shows the processing involved when a message that was previously stored in
a slot on the HAR controller is deleted. The command is processed asynchronously via the
command queue. In addition to deleting the message from the slot on the HAR controller,
any voice data that was custom recorded for in the message may be removed from the
system. The voice data is not removed from the system if a message library originally
stored it.

HARAudioClipManager HARSlotManagerCommandQueue

HARDeleteSlotMsgCmd

ISSAP55HAR

ORB

Chart2HARImpl CommandStatus HARControlDB
PushEventSupplier

(DMSControl)

completed

[no longer in maint mode]
completed

update

removeClips

deleteSlotMessage

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

create

addCommand

update

execute

deleteSlotMsgImpl

remove

[success]
updateStatus

[success]
push (HARStatusChanged)

[success]
[MessageClip instanceof HARMessageAudioDataClip]

removeAudioDataClip

Figure 73. HARControlModule:deleteSlotMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-112 04/17/01

3.8.2.9 HARControlModule:evaluateQueue (Sequence Diagram)

This diagram shows the processing done by the HARArbitrationQueueImpl’s
implementation of the ArbitrationQueueImpl’s evaluateQueue abstract method. The base
class implementation performs housekeeping prior to calling evaluateQueue, so the
evaluate queue only needs to evaluate the messages on the message queue and determine
the message (or messages) to put on the device or determine if the device should be
blanked. In this implementation, at most one message is on the arbitration queue for
activation. When told to evaluate the queue, the HARArbitrationQueue looks at the top
entry on the queue to decide the processing that must occur. If the entry is not already
active or is marked for update and it is not marked for deletion, the message contained in
the entry will be set on the HAR. If the entry is marked for deletion and is active, the HAR
is blanked. Refer to the HARControlModule:setMessageImpl and
HARControlModule:blankImpl sequence diagrams for details on the processing that occurs
when the arbitration queue executes the command.

ArbitrationQueueImpl
HARArbitrationQueue m_msgQueue HARAudioClipManager

If the queued
message contains
recorded voice,
it is persisted and
a thin wrapper that
can provide access
to the recorded voice
is created.

HARSetMsgCmd

CommandQueueArbQueueEntry

Refer to setMessageImpl
and blankImpl
sequence diagrams for
details on processing that
occurs when the HARSetMsgCmd
and HARBlankCmd are executed.

The command queue
executes commands
asynchronously.

evaluateQueue

elementAt(0)

[active or updated and !deleted]
m_inProgress = true

[active or updated and !deleted]
setMsgFromArbQueue

create

Base class provides
synchronization prior
to calling evaluateQueue.

addCommand

create

addCommand

These two are
actually the same
object. They are shown
separately to indicate
that the base class calls
the derived class implementation
because the base class impl is
abstract.

HARBlankCmd

Chart2HARImpl

[entry marked as deleted]
blankFromArbQueue

execute

[!active or update and !deleted]
[*for each HARMessageAudioDataClip]

storeAudioDataClip

HARMessageAudioClip

Figure 74. HARControlModule:evaluateQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-113 04/17/01

3.8.2.10 HARControlModule:getConfiguration (Sequence Diagram)

A user with appropriate priveleges can get the current configuration of the HAR. This
involves returning the current configuration object from the HAR object.

ORB

Chart2HARImpl

getConfiguration

[improper rights]
AccessDenied

[success]
Chart2HARConfiguration

Figure 75. HARControlModule:getConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-114 04/17/01

3.8.2.11 HARControlModule:getStatus (Sequence Diagram)

When a request is made for the current status of the HAR, the HAR’s status object is
returned.

Chart2HARImpl

getStatus

Chart2HARStatus

The status object is kept
up to date during operations
that change the status of
the HAR. All that needs to be
done when status is requested
is to return the current
Chart2HARStatus object.

ORB

Figure 76. HARControlModule:getStatus (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-115 04/17/01

3.8.2.12 HARControlModule:Initialize (Sequence Diagram)

This sequence diagram shows the processing that takes place when the HARControlModule
is initialized. The module creates the support objects that will be needed by the HAR
factory and the HAR objects. The HAR Factory is created which in turn creates the HARs
that have been previously added to the factory. The factory and the HAR objects are added
to a recurring timer so that they can conduct their timer based processing when appropriate.
The factory performs shared resource management checks periodically and the HARs may
need to periodically update their message based on the time of day, depending on the
message content.

schedule

schedule

create ArbitrationQueueDB

CommandQueuecreate

getDBConnectionManager

HARAudioClipManager

CheckControlledResourcesTask

UpdateDateTimeFieldsTask

create

create

create

create

create

Service
Application

HARControlModule
ServiceApplication

HARControlModuleProperties

HARAudioClipDB

java.util.Timer

HARArbitrationQueueImplcreate

registerTraderTypes Event channels are needed
for HARControl events and
generic resource management
events.

create

POA

ISSAP55HAR

activate_object

PushEventSupplier

PushEventSupplier

activate_object(HARAudioClipManager)

create

registerObject

activate_object (HARFactoryImpl)

getDefaultProperties

create

create

registerEventChannel

HARFactoryImpl

Chart2HARImpl

create

registerEventChannel

create

registerObject(HARFactoryImpl)

getHARObjects

[*for each HAR in DB]
create

[*for each HAR]

HARControlDB

initialize

getProperties

Figure 77. HARControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-116 04/17/01

3.8.2.13 HARControlModule:PutInMaintenanceMode (Sequence Diagram)

A user with appropriate priveleges can put a HAR in maintenance mode. When this occurs,
the HAR is blanked and its transmitter is turned off. If there is a failure commanding the
device, the status of the HAR is still marked as blank in CHART II and the device is moved
to the maintenance mode state.

[already offline] completed

setMessage("default message")

addCommand

updateHARStatus

push(HARStatusChanged)

setTransmitterOff

update

execute

putInMaintModeImpl

putInMaintenanceMode

[improper rights]
AccessDenied

[improper rights] completed

[already in maintenance mode] completed
[already offline]

CHART2Exception

create

interrupt

HARArbitrationQueueImpl

ISSAP55HAR PushEventSupplier HARControlDB

HAR status is
set to
blank even if
the attempt
to blank the
device fails.

Command Queue
executes commands
asynchronously.

ORB

Chart2HARImpl CommandQueue CommandStatus

HARPutInMaintModeCmd

CommandStatusWatcher

CommandStatus

SHAZAM

start

waitForCompletion

[*for each
HARMessageNotifierWrapper

that isSHAZAM()]

create

create

putInMaintenanceMode

add

[finished processing]
completed

Figure 78. HARControlModule:PutInMaintenanceMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-117 04/17/01

3.8.2.14 HARControlModule:PutOnline (Sequence Diagram)

A user with appropriate priveleges can put a HAR online. When this occurs, the HAR is
blanked and the transmitter is set on. If a failure occurs while commanding the device, the
device is not brought online.

We setup the HAR when it
is brought online because
we don't know what state
it is in. It will have likely been
powered off and lost all memory.
Refer to setup sequence diagram
for details.

deactivateMessageNotifiers

[success]
resume

ISSAP55HAR HARControlDB
PushEventSupplier

(HAR Control)

update("HAR xyz: putting online")

[improper rights] completed

[already online] completed

[already online]
completed

setupImpl

[failure]
completed

[success]
updateHARStatus

push (HARStatusChanged)

HARArbitrationQueueImpl

ORB

Chart2HARImpl TokenManipulator CommandStatus

HARPutOnlineCmd

CommandQueue

Command Queue
processes commands
asynchronously.

putOnline

[already online]
CHART2Exception

checkAccess

[improper rights]
AccessDenied

create

addCommand

putOnlineImpl

execute

Figure 79. HARControlModule:PutOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-118 04/17/01

3.8.2.15 HARControlModule:removeEntry (Sequence Diagram)

Remove entry is called when a message placed on an arbitration queue is no longer needed
by the originating traffic event. The base class performs queue housekeeping and then calls
the derived class’s implemenation of evaluateQueue. Refer to the
ArbQueueProcessing:removeEntry sequence diagram for details. The processing performed
by the HARArbitrationQueueImpl’s evaluateQueue method is shown in
HARControlModule:evaulateQueue.

Refer to the HARControlModule:evaluateQueue
sequence diagram for details.

evaluateQueue

ResponsePlanItem

HARArbitrationQueue

removeEntry

Base class performs
processing which marks the
proper entry for deletion in
m_msgQueue. And calls
the derived class evaluate
queue method if a command
is not already in progress.
If a command is already in progress,
the arb queue will take care of the entry
marked for deletion when the previous
command completes. Refer to the
ArbQueueProcessing:removeEntry
sequence diagram for details.

Figure 80. HARControlModule:removeEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-119 04/17/01

3.8.2.16 HARControlModule:removeHAR (Sequence Diagram)

A user with proper functional rights can remove a HAR from the system if the HAR is
offline. The HAR delegates its removal to the HAR factory that created it. The HAR is
withdrawn from the trader and disconnected from the ORB. The HARControlDB object is
called to remove the HAR from the database, and the HAR is removed from the HAR
factory’s list of HARs. After the HAR has been removed from the HAR list, no references
to the HAR exist in the HARControlModule and the CHART2HARImpl object is deleted.

ORB

Chart2HARImpl Chart2HARFactoryImpl HARControlDBPOA

[not offline]
CHART2Exception

CosTrading.Register

remove

removeHAR

"remove from list"

[improper rights]
AccessDenied

withdraw

deactivate_object

deleteHAR

Figure 81. HARControlModule:removeHAR (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-120 04/17/01

3.8.2.17 HARControlModule:reset (Sequence Diagram)

A user with the proper functional rights can reset the HAR controller when the HAR is in
maintenance mode. A reset command is issued to the HAR controller that erases all stored
data in the HAR. The setupImpl method is then called to restore the data that resides on the
HAR. Refer to the setup sequence diagram for details on the setupImpl call.

update

execute

resetImpl

Refer to the setup sequence
diagram for details on the call
to setupImpl. This call performs
the setup of the HAR controller,
pushes an event, persists the
state of the HAR, and marks
the command status as completed.

reset

setupImpl

[failure]
completed

CommandQueue

HARResetCmd

ISSAP55HAR

ORB

Chart2HARImpl CommandStatus
PushEventSupplier

(DMSControl)

[no longer in maint mode]
completed

update

reset

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

create

addCommand

Figure 82. HARControlModule:reset (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-121 04/17/01

3.8.2.18 HARControlModule:setConfiguration (Sequence Diagram)

A user with the appropriate priveleges can set the configuration of the HAR. The HAR
must be in maintenance mode when setting the configuration. The command is processed
asynchronously by the command queue. Because the configuration consists of many
separate values that are set individually on the device, the possiblity of partial success
exists. When this occurs warning messages are given back to the user through the command
status object and the configuration is set to reflect the partial success.

[some or all of the configuration changes succeeded]
push (HARConfigurationChanged)

completed

[failure]
set flag and append

warning to status msg

Refer to setDefaultMessage
sequence diagram for details.

Chart2HARConfiguration
(instance stored in
Chart2HARImpl) DictionaryWrapper

[*for each message clip in
proposed configuration

default header, trailer, and
default message]

[Message clip instanceof HARMessageTextClip]
checkForBannedWords

[banned words exist]
DisapprovedMessageContent

Refer to SetDefaultHeader
sequence diagram for sample
of logic to be used. The default
trailer is stored in slot 3.

Chart2HARImpl ISSAP55HARCommandQueue CommandStatus

HARSetConfigurationCmd

Command queue executes
commands asynchronously

HARControlModuleDB PushEventSupplier

setConfiguration

[improper rights]
AccessDenied

[not in maintenance mode]
CHART2Exception

[improper rights]
completed

[not in maintenance mode]
completed

create

update

addCommand

execute

ORB

setConfigurationImpl

[no longer in maint mode]
completed

update

[inter message spacing changed]
setConfiguration

[some or all of the configuration changes succeeded]
updateHARConfiguration

set name, location, phone numbers, max voice seconds, and message notifier list

[success]
set inter-message spacing

setDefaultHeader

setDefaultTrailer

setDefaultMessage

[failure]
set flag and append

warning to status msg

[failure]
set flag and append

warning to status msg

"format status message based on
full success or partial success

with warning messages"

Refer to SetDefaultHeader
sequence diagram for details.

Figure 83. HARControlModule:setConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-122 04/17/01

3.8.2.19 HARControlModule:SetDefaultHeader (Sequence Diagram)

This sequence diagram shows processing that occurs when a message clip is received by the
CHART2HARImpl to be stored as the default header for the HAR. This is a sub-process of
setting the configuration of the HAR. The logic for this operation also applies to setting the
default trailer for a HAR.

The message clip is processed differently based on the type of message clip it is. If the
message clip is a text message clip and the clip is different than the current default header
for the HAR, the ISSAP55HAR object is called to store the text message (converted to
speech) in slot 1 of the HAR. If the storage into the HAR is successful, the message clip is
stored in the current HAR configuration as the default message header.

If the message clip is an audio data message clip (custom recorded by the operator) the
voice data is persisted and a thin wrapper is created to represent the clip. This thin wrapper
does not carry the voice data (which could be very large) but instead carries a reference to
an object (streamer) that can supply the data when it is needed.

If the message clip passed is a pre-stored clip (used to indicate a slot in the HAR that has
been previously downloaded with a message), the processing of the default header produces
an error. Note that the GUI prevents the user from using a prestored clip for the default
header because the default header is itself stored in a slot on the HAR, thus this check exists
as an extra precaution.

[failure AND
MessageClip instanceof HARMessageAudioDataClip]

removeAudioDataClip

success or failure

HARImpl

Chart2HARImpl

setDefaultHeader

HARSlotManager

storeClips(slot 1)

storeClips(slot 1)

HARControlDB

updateConfiguration

[success AND
prev default hdr instanceof HARMessageAudioDataClip]

removeAudioDataClip

HARConfiguration

[success]
"set default header"

HARAudioClipManager ISSAP55HARHARMessage

When the clip to be used
as the default header is
an AudioDataClip (contains
actual voice data) it is persisted
and an AudioClip is created as
a thin wrapper that indirectly
provides access to the data.
This new wrapper is the object
that is stored in the configuration.

[MessageClip
instanceof

HARMessageAudioDataClip]
storeAudioDataClip

MessageClip
instanceof

HARMessagePrestoredClip]
CHART2Exception

HARMessageAudioClip

[MessageClip instanceof HARMessageAudioClip AND ID != existing hdr ID]
store

success or failure

[MessageClip instanceof HARMessageTextClip AND new txt != existing txt]
store

Figure 84. HARControlModule:SetDefaultHeader (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-123 04/17/01

3.8.2.20 HARControlModule:setDefaultMessage (Sequence Diagram)

This sequence diagram shows processing that occurs when a message is received by the
CHART2HARImpl to be stored as the default message for the HAR. This is a sub-process
of setting the configuration of the HAR. The logic for this operation also applies to setting
the default trailer for a HAR.

Each clip in the header, body, and trailer of the message are processed to persist any
recorded voice prior to downloading the message to the HAR. The message is then sent to
the HAR via the ISSAP55 object and the HAR’s configuration is updated with the new
default message. Note that when storing the HAR message in the controller, if use of
default header and / or trailer is specified in the message they will not be downloaded to the
controller but instead default header and/or trailer slots will be specified when the default
message is to be played.

ISSAP55HAR HARConfiguration

[MessageClip instanceof
HARMessagePrestoredClip]

CHART2Exception

storeClips (slot 2)

[success]
set default message

Chart2HARImpl

Chart2HARImpl HARMessage HARAudioClipManager

If the message contains
clips with recorded voice,
they are persisted and replaced
with a thin wrapper.

[*for each of header,
body, and trailer in

HARMessage]

set Header or
set Trailer or
set Body as
appropriate

DictionaryWrapper

setDefaultMessage

[MessageClip instanceof HARMessageAudioDataClip]
storeAudioDataClip
HARMessageAudioClip

HARSlotManager

store

[success]
[*for each HARMessageAudioClip
in the previous default message]

removeAudioDataClip

[failure]
[*for each HARMessageAudioClip
in the proposed default message]

removeAudioDataClip

All clips (header, body,
and trailer) are passed
and stored in a single
slot.

Figure 85. HARControlModule:setDefaultMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-124 04/17/01

3.8.2.21 HARControlModule:setMessage (Sequence Diagram)

A user with proper functional rights can set a message on a HAR when it is in maintenance
mode. A command object that knows how to set a message on a HAR is created and passed
to the CommandQueue to be processed asynchronously. The processing done when the
command is executed from the command queue is shared among the set message in
maintenance mode and the setting of a message through a traffic event and is therefore
shown on a separate diagram, HARControlModule:setMessageImpl.

Refer to the HARControlModule:setMessageImpl
sequence diagram for details.

setMessage

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

[*for each of Header,
Body, and

Trailer in message]
[HARMessageClip instanceof HARMessageTextClip]

checkForBannedWords

[banned words exist]
DisapprovedMessageContent

create

[banned words exist]
completed

addCommand

update

execute

ORB

Chart2HARImpl CommandStatusCommandQueue DictionaryWrapper

HARSetMsgCmd

setMessageImpl

Figure 86. HARControlModule:setMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-125 04/17/01

3.8.2.22 HARControlModule:setMessageImpl (Sequence Diagram)

This sequence diagram shows the processing that occurs when a HARSetMsgCmd is
executed from the command queue. This command can be placed on the queue as a
maintenance command or as part of online processing, therefore some of the processing
differs based on origination of the message. Refer to the notes on the diagram for details.

When setting the message on the HAR, any recorded voice clips that exist in the message
are passed to the HARAudioClipManager for storage and they are converted from the
heavy weight HARMessageAudioDataClip objects (which contain the actual voice data) to
lightweight HARMessageAudioClip objects, which contain a streamer that can provide the
data when needed. These lightweight objects are used to pass voice clips throughout the
system to avoid the bandwidth needed to pass the actual voice data. The actual voice data is
only passed (via the streamer) when the actual voice data is needed for listening (by the end
user) or for playing to the device (by FMS). Messages that are set when the device is online
through the arbitration queue’s addEntry method will store off any voice data in the
HARAudioClipManager prior to the setMessageImpl getting invoked, so the processing
done on the HARAudioClipManager shown on the diagram will only ever apply to
messages set in maintenance mode.

Following any processing of voice data clips, the message is passed to the
HARSlotManager to download the clips to the appropriate slot on the HAR device using
the ISSAP55HAR object. The HARSlotManager keeps track of all slots in use on the HAR
controller, including the clips that occupy the slot and how the slot is being used
(Immediate message, default message, etc.) The ISSAP55HAR object is used to carry out
the communications to store one or more clips in a slot on the HAR device, including
piecing together clips when multiple clips are to be stored in a single slot.

After the HARSlotManager has the clips stored into the HAR controller, a call is made to
the ISSAPP55HAR object to have it command the HAR device to play the slot (or slots)
that contain the immediate message.

R1B2 Servers Detailed Design Rev. 0 3-126 04/17/01

HARArbitration
QueuImpl

[arb queue set message AND no longer online]
requestFailed

[arb queue set message AND failure]
requestFailed Set message commands

originating from the arbitration
queue add message will have
already stored any AudioDataClips
in the HARAudioClipManager, thus
AudioDataClips will exist at this
point only for maintenance mode
set message.

activateMessageNotifiers

HARAudioClipManager

Note: HARAudioClipManager
chooses whether or not to
remove the clip based on the
owner ID passed during addition
and removal, thus if the message
was a stored message the clips
are not removed from the system
because the library owns the
clips, not the HAR. For this release,
the arbitration queue uses the HAR's
ID for the owner ID and thus audio
data clips stored from the arb queue
are removed here.

 When the
arbitration queue is implemented to
hold multiple messages, it will use
its own ID for audio data clip storage
and the clips will not be removed
until the message is removed from
the arbitration queue.

HARSlotManager

Note - Immediate
message could take
multiple slots depending
on the types of clips
it contains, therefore
this call could be made
more than once.

HARSetMsgCmd ISSAP55HARCommandQueue Chart2HARImpl

CommandStatus HARControlModuleDB

PushEventSupplier
(DMSControl)

completed

[default header specified
and it has a

date-time field]
storeClips

Stop the current message
prior to download of new
message because we will
overlay into the same slot
that is playing.

If any of the commands
are successful while
others failed, we still
need to update the
status and push the
status changed event
to reflect the current
status. For example
if we downloaded clips
but failed when we tried
to play them, the slot
configuration has
changed.

Flags are used to track
the sub-commands that
have succeeded so the
status can be formatted
properly prior to completion.

[If not blank]
stopMessage

[failure]
completed

[slots were used by
previous immediate

msg that will not
be used by new msg]

deleteClips

[arb queue set message AND
no longer online]

completed

Any slots that were
used by previous
message but not used
by this message are
deleted.

Set message commands from
maintenenance mode will not
have any message notifiers specified
for activation.

[arb queue set message AND success]
requestSuccessful

[success]
setMessage

[maint mode set message AND
no longer in maint mode]

completed

update

storeClips

execute
setMessageImpl

[success]
storeImmediateMsg

[any success]
updateHARStatus

[any success]
push (HARStatusChanged)

[success]
[*for each HARMessageAudioDataClip in message]

storeAudioDataClip

[failure]
[*for each audio data clip in proposed msg not in slot]

removeAudioDataClip

[success]
[*for each audio data clip in previous message]

removeAudioDataClip
[arb queue set message AND failure]

requestFailed

Headers can contain a date-time field
to be replaced with "morning, afternoon,
or evening" based on the time of day. When
the default header is specified for use and it
contains a date/time field, the default
header is sent to the controller with the
date/time field updated for the current
time. Note - after this initial setting of the
message, message headers that contain
a date/time field and are active will be
updated 3 times a day by re-loading the clip
to the controller. See the updateHARMessageDateTime
diagram for details.

Figure 87. HARControlModule:setMessageImpl (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-127 04/17/01

3.8.2.23 HARControlModule:setTransmitterOff (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter off when the HAR is in
maintenance mode. This call is executed asynchronously with the communications being
delegated to the ISSAP55HAR class.

[success]
updateHARStatus

[success]
push (HARStatusChanged)

setTransmitterOffImpl

setTransmitterOff

CommandQueue

HARSetTransmitterOffCmd

ISSAP55HAR

ORB

Chart2HARImpl CommandStatus HARControlModuleDB
PushEventSupplier

(DMSControl)

completed

[no longer in maint mode]
completed

update

setTransmitterOff

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

create

addCommand

update

execute

Figure 88. HARControlModule:setTransmitterOff (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-128 04/17/01

3.8.2.24 HARControlModule:setTransmitterOn (Sequence Diagram)

A user with proper functional rights can set the HAR transmitter on when the HAR is in
maintenance mode. This call is executed asynchronously with the communications being
delegated to the ISSAP55HAR class.

execute

[success]
updateHARStatus

[success]
push (HARStatusChanged)

setTransmitterOnImpl

setTransmitterOn

update

CommandQueue

HARSetTransmitterOnCmd

ISSAP55HAR
PushEventSupplier

(DMSControl)HARControlModuleDB

ORB

Chart2HARImpl CommandStatus

completed

[no longer in maint mode]
completed

update

setTransmitterOn

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

create

addCommand

Figure 89. HARControlModule:setTransmitterOn (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-129 04/17/01

3.8.2.25 HARControlModule:setup (Sequence Diagram)

The setup command involves re-sending the current setup (as known in CHART II) to the
HAR device. This includes setting the configurable parameters on the HAR, downloading
all messages that are to be stored in slots on the HAR, setting the HAR to its default
message, and turning the transmitter on. Because this involves many steps, it is possible
that only partial success is achieved. In this case, flags are used to keep track of which parts
failed and an appropriate status message is relayed to the end-user via the command status
object.

update

execute

[any part was successful]
updateStatus

[any part was successful]
push (HARStatusChanged)

setupImpl

restoreAll

Partial success is
possible with this
command. If a failure
occurs, a flag is set
that is used to format
the status message
pushed in the
completed call.
Any failure causes
the completion code
to be "unsuccessful"

setConfiguration

[* for each clip
in status slotData

list]

setMessage(default message slot(s))

setTransmitterOn

HARSlotManagerCommandQueue

HARSetupCmd

ISSAP55HAR

ORB

Chart2HARImpl CommandStatus HARControlDB
PushEventSupplier

(DMSControl)

completed

[no longer in maint mode]
completed

update

storeClips

setup

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

create

addCommand

Sets the inter message spacing
and static setup values.

Figure 90. HARControlModule:setup (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-130 04/17/01

3.8.2.26 HARControlModule:storeSlotMessage (Sequence Diagram)

A user with proper functional rights can store a message in a slot in the HAR controller for
later activation. This command is processed asynchronously via the command queue. When
executed, the HARAudioClipManager object is used to download the message to the HAR
and track the slot usage.

HARAudioClipManager HARSlotManagerCommandQueue DictionaryWrapper

HARStoreSlotMsgCmd

ISSAP55HAR

ORB

Chart2HARImpl CommandStatus HARControlDB
PushEventSupplier

(DMSControl)

completed

[no longer in maint mode]
completed

update

storeClips

storeSlotMessage

[improper rights]
AccessDenied

[improper rights]
completed

[not in maint mode]
CHART2Exception

[not in maint mode]
completed

[HARMessageClip instanceof HARMessageTextClip]
checkForBannedWords

[banned words exist]
DisapprovedMessageContent

create

[banned words exist]
completed

addCommand

update

execute

storeMessageImpl

store

[success]
updateStatus

[success]
push (HARStatusChanged)

[MessageClip instanceof HARMessageAudioDataClip]
storeAudioDataClip

[failure]
[MessageClip instanceof HARMessageAudioDataClip]

removeAudioDataClip

Figure 91. HARControlModule:storeSlotMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-131 04/17/01

3.8.2.27 HARControlModule:TakeOffline (Sequence Diagram)

A user with appropriate priveleges can take a HAR offline. This causes the HAR to be
blanked and its transmitter to be set off. If the HAR cannot be blanked, it is still marked as
blank within the CHART II system and the device moves to the offline state.

completed

interrupt

start

waitForCompletion

ISSAP55HAR PushEventSupplier
(HARControl) HARControlDB

HAR status is
set to
blank even if
the attempt
to blank the
device fails.

[already offline] completed

setMessage("default message")

updateHARStatus

push(HARStatusChanged)

setTransmitterOff

Arbitration Queue
executes commands
asynchronously.

update

execute

takeOfflineImpl

ORB

Chart2HARImpl CommandQueue CommandStatus

HARTakeOfflineCmd

takeOffline

[improper rights]
AccessDenied

[improper rights] completed

[already offline] completed
[already offline]

CHART2Exception

create

addCommand

HARArbitrationQueueImpl

add

[finished processing]
completed

CommandStatus

SHAZAM

[*for each
HARMessageNotifierWrapper

that isSHAZAM()]

create

create

takeOffline

CommandStatusWatcher

Figure 92. HARControlModule:TakeOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-132 04/17/01

3.8.2.28 HARControlModule:UpdateHARMessageDateTime (Sequence Diagram)

HAR Text messages can contain a tag that is to be substituted with the text “morning”,
“afternoon”, or “evening” in place of the tag based on the time of day the message is set.
This substitution will be done at the time the HAR message is set and will also be done to
any messages that are active at 00:00, 12:00, and 17:00. This sequence diagram shows the
processing involved in the automated substitution and message setting. This automated
process involves telling each HAR object to update its message if it deems it is necessary. If
necessary, the HAR puts a command on its command queue and the command is executed
asynchronously. Because the command queue may have had a command in progress that
changes the HAR’s message, it is necessary to check if the date/time update needs to be
done when the command is executed. If so, the appropriate clip (or clips) are re-
downloaded to the HAR and the appropriate spoken word will replace the date/time field
during the download process, which involves text to speech conversion.

refreshDateTimeImpl

[Message to be
updated not equal
current message]

create

[current msg has no
date time fields]

[* for each HARImpl]

execute

This task is scheduled
to run at 12:00, 17:00,
and 00:00.

CommandQueue

HARRefreshDateTimeCmd

Chart2HARFactoryImpl

doDateTimeFieldCheck

checkDateTimeFields

java.util.Timer

Chart2HARImplUpdateDateTimeFieldsTask

run

CommandQueue executes
the command asynchronously.

HARSlotManager PushEventSupplier

HARControlDB

addCommand

[device not online]

store

[failure]
push(HARStatusChanged)

If there was a command on the
queue that changed the message
after we were queued, we don't
need to perform the update because
even if the new message has date
time fields, they will have been put
on the device with the proper word
embedded. Clip that contains the

date time field is
re-sent to the HAR.
If the clip is stored in
a slot with other clips,
all clips will have to
re-sent.

[failure]
updateStatus

Figure 93. HARControlModule:UpdateHARMessageDateTime (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-133 04/17/01

3.9 HARUtility

3.9.1 Classes

3.9.1.1 HARUtility (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the
server. Most (if not all) of these classes are implementations of value type classes defined in
the system interfaces (IDL).

1

1

java.util.LinkedList

2

DBConnectionManager

1

1

HARAudioClipDB

1 1

1

1 validates
message
content
using

1

1..3

Chart2HARStatusImpl

Chart2HARStatus Chart2HARConfiguration

Chart2HARConfigurationImpl HARRPIDataImpl

HARRPIData HARPlanItemData

HARMessageImpl

HARMessage DictionaryWrapper

HARMessageClip

HARMessageAudioClip

HARPlanItemDataImpl

AudioPushConsumer
1 1

HARMessageTextClip HARMessagePrestoredClip

HARMessageAudioClipImpl HARMessageTextClipImpl HARMessagePrestoredClipImpl

java.lang.ThreadGroup

AudioPushThreadManager
AudioPushThread

java.lang.Runnable

* 1

HARMessageAudioDataClip

HARMessageAudioDataClipImpl

HARAudioClipManager

AudioClipStreamer

1

getConnection():java.sql.Connection
releaseConnection();
shutdown();

AudioPushThreadManager(int numPushThreads)
pushAduio(AudioPushConsumer consumer,
 InputStream stream,
 AudioDataFormat format,
 long chunkSize)
releaseAudioPushThread()
-getAudioPushThread()

m_freeThreads
m_inUseThreads

setClipInfo
-clearClipInfo

m_consumer
m_format
m_stream
m_inUse
m_chunkSize

HARAudioClipManager(byte[] identifier,
 IdentifierGenerator,
 DBConnectionManager):HARAudioClipManager
storeAudioDataClip(HARMessageAudioDataClip clip,
 byte[] ownerID):HARMessageAudioClip
removeAudioDataClip(byte[] clipID, byte[] ownerID)

byte[] m_id

getFirst():Object
add(Object)

getDescription(byte[] clipID):string
setDescription(byte[] clipID, byte[] ownerID, string desc)
getVoiceSeconds(byte[] clipID):long
storeAudioData(byte[] clipID,
 byte[] ownerID,
 string desc,
 long seconds,
 HARMessageAudioDataClip clip)
getAudioData(byte[] clipID):HARMessageAudioDataClip
removeAudioClip(byte[] clipID, byte[] ownerID)

DBConnectionManager m_db

run()

Figure 94. HARUtility (Class Diagram)

3.9.1.1.1 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface

3.9.1.1.2 AudioPushConsumer (Class)

This interface is implemented by objects that are capable of receiving audio data using the
push model, where the server pushes the data to the consumer. One call to
pushAudioProperties() will always precede any calls to pushAudio().

3.9.1.1.3 AudioPushThread (Class)

This class is a thread that is used to push audio clip information to an AudioPushConsumer.

R1B2 Servers Detailed Design Rev. 0 3-134 04/17/01

3.9.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.9.1.1.5 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART II specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.9.1.1.6 CHART2HARConfigurationImpl (Class)

This class is a concrete implementation of the CHART2HARConfiguration abstract class
generated from IDL.

3.9.1.1.7 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART II processing and extends beyond the status related to typical HAR
device control.

3.9.1.1.8 CHART2HARStatusImpl (Class)

This class is a concrete implementation of the CHART2HARStatus abstract class generated
from IDL.

3.9.1.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 Servers Detailed Design Rev. 0 3-135 04/17/01

3.9.1.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerence by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.9.1.1.11 HARAudioClipDB (Class)

This class provides access to the database for the HARAudioClipManager. It provides a
means to store and retrieve recorded voice to/from the database.

3.9.1.1.12 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique ID and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean up of the clip when it is no longer needed.

3.9.1.1.13 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.9.1.1.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

R1B2 Servers Detailed Design Rev. 0 3-136 04/17/01

3.9.1.1.15 HARMessageAudioClipImpl (Class)

This class defines HARMessageAudioClip as defined in the IDL. Refer to
HARMessageAudioClip for details.

3.9.1.1.16 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.9.1.1.17 HARMessageAudioDataClipImpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to
HARMessageAudioDataClip for details.

3.9.1.1.18 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.9.1.1.19 HARMessageImpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from
IDL.

3.9.1.1.20 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.9.1.1.21 HARMessagePrestoredClipImpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL. Refer to
HARMessagePrestoredClip for details.

3.9.1.1.22 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.9.1.1.23 HARMessageTextClipImpl (Class)

This class implements HARMessageTextClip as defined in the IDL. Refer to
HARMessageTextClip for details.

R1B2 Servers Detailed Design Rev. 0 3-137 04/17/01

3.9.1.1.24 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.9.1.1.25 HARPlanItemDataImpl (Class)

This class is a concrete implementation of the HARPlanItemData abstract class generated
from IDL.

3.9.1.1.26 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.9.1.1.27 HARRPIDataImpl (Class)

This class is a concrete implementation of the HARRPIData abstract class generated from
IDL.

3.9.1.1.28 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.9.1.1.29 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

3.9.1.1.30 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

R1B2 Servers Detailed Design Rev. 0 3-138 04/17/01

3.9.2 Sequence Diagrams

3.9.2.1 HARUtility:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client. The
AudioPushThreadManager manages a pool of threads that can be used to push audio data
back to the clients. When a request is made to push audio, the AudioPushThreadManager
looks in the thread list for a free thread. If all the threads are being used, the request waits
until a thread becomes available. Once a thread becomes available, the thread is notified of
the clip by setting the clip data and the thread starts pushing the audio data by first pushing
the audio properties. Then, the thread starts to push the audio data in chunks of the size
requested by the client. If the pushing operation fails, an error is passed to the consumer. At
the completion of pushing, the thread clears the clip data and informs the
AudioPushThreadManager to free the thread. The AudioPushThreadManager in turn frees
the thread and notifies any waiting request.

size

m_freeThreads m_inUseThreads

getFirst

[if a free thread
 is not available]

wait

AudioPushThread

add(AudioPushThread)

remove(AudioPushThread)

remove(AudioPushThread)

add(AudioPushThread)

wait

notify

Clear Clip Info

releaseAudioPushThread

Client

AudioPushThreadGroup AudioPushThread AudioPushConsumer

AudioPushThread
pushes the clip information
asynchronously.

Audio data returned begins and
ends on frame boundaries depending
upon the audio format. So, the size of
audio data pushed may be less than the
chunk size requested.

pushAudioProperties

[while more audio data
&

no error pushing data] pushAudio

[error pushing data]
pushFailure

setClipInfo

[while not
shutdown]

notify

pushAudioClipInfo

Figure 95. HARUtility:PushAudio (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-139 04/17/01

3.9.2.2 HARUtility:StoreAudioClip (Sequence Diagram)

When a CHART2HARImpl or the MessageLibraryDB object have been passed a HAR
message that contains a HARMessageAudioDataClip, the HARAudioClipManager is called
to store the voice data and create a thin wrapper object that represents the voice data. This
thin wrapper is passed around the system instead of the voice data itself. The thin wrapper
contains a reference to the HARAudioClipManager which will push the voice data to any
holders of the thin wrapper that request the actual voice data.

createIdentifier

Identifier

storeAudioClip

create

[failure]
CHART2Exception

HARMessageAudioClip

HARMessageAudioClip

HARAudioClipManager
stores itself as the streamer
for the audio data in the
audio clip.

Chart2HARImpl
OR

MessageLibraryDB

HARAudioClipManager IdentifierGenerator HARAudioClipDB

storeAudioDataClip

Figure 96. HARUtility:StoreAudioClip (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-140 04/17/01

3.10 JavaClasses

3.10.1 Classes

3.10.1.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming
language that are used in class and sequence diagrams for other packages within this
design.

java.util.Timer

java.util.TimerTask

javax.sound.sampled.AudioSystemjava.io.File java.io.InputStream

java.lang.ThreadGroup

java.util.TreeMap

java.sql.Connectionjava.lang.Thread java.sql.Statement

java.awt.Component java.awt.event.ItemListener

javax.swing.JTabbedPane

javax.swing.table.
AbstractTableModel

javax.swing.tree.
MutableTreeNode

javax.swing.tree.
DefaultTreeModel

java.util.Hashtable java.util.Properties

java.util.LinkedList

java.awt.event.KeyListenerjava.awt.event.ActionListenerjava.lang.Runnable

java.lang.Object

javax.swing.JOptionPane

javax.swing.JFrame

schedule
cancel

run

executeQuery(string query):ResultSet
executeUpdate(string):int

createStatement():Statement

put(Object key, Object value)
get(Object key):value

getFirst():Object
add(Object)

start()
interrupt()
setDaemon(boolean)
run():void

getProperty()
setProperty()

run()

showMessageDialog
showOptionDialog

show

keyPressed
keyReleased
keyTyped

hashCode()
equals()

actionPerformed()

Figure 97. JavaClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-141 04/17/01

3.10.1.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and
panels.

3.10.1.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.10.1.1.3 java.awt.event.ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list
item or combo box item.

3.10.1.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.10.1.1.5 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.10.1.1.6 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.10.1.1.7 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.10.1.1.8 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.10.1.1.9 java.lang.Thread (Class)

This class represents a java thread of execution.

3.10.1.1.10 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

R1B2 Servers Detailed Design Rev. 0 3-142 04/17/01

3.10.1.1.11 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

3.10.1.1.12 java.sql.Statement (Class)

Java class used for executing a static SQL statement and obtaining the results produced by
it.

3.10.1.1.13 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.10.1.1.14 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

3.10.1.1.15 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.10.1.1.16 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.10.1.1.17 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.10.1.1.18 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.10.1.1.19 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This
class lets you query and access the mixers that are installed on the system.

R1B2 Servers Detailed Design Rev. 0 3-143 04/17/01

3.10.1.1.20 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.10.1.1.21 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.10.1.1.22 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

3.10.1.1.23 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.10.1.1.24 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.10.1.1.25 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

R1B2 Servers Detailed Design Rev. 0 3-144 04/17/01

3.11 MessageLibraryModule

3.11.1 Classes

3.11.1.1 MessageLibraryModuleClasses (Class Diagram)

The MessageLibraryModule is a Service Application module that serves the
MessageLibraryFactory, MessageLibrary and StoredMessage objects to the rest of the
CHART2 system. This diagram shows how the implementation of these CORBA interfaces
rely on other supporting classes to perform their functions.

Dictionary

ServiceApplication

DMSMessage

DBConnectionManager

1 1

1

1

1

1

1

*

1

*

1 1

*

1

* 1

Message

HARMessage

PushEventSupplier

MessageLibraryDB

MessageLibraryFactory

MessageLibraryFactoryImpl
11

MessageLibrary

MessageLibraryImpl

StoredMessage

StoredMessageImpl

ServiceApplicationModule

MessageLibraryModule

1

1

1

1

getDB():MessageLibraryDB
getPushEventSupplier():PushEventSupplier
getPOA():POA
getTradingRegister():Register
getTradingLookup():Lookup
getServiceApplication():ServiceApplication
getDictionary():Dictionary

MessageLibraryDB(DBConnectionManager)
getMessageLibraryList():String[]
getStoredMessages():StoredMessage[]
insertStoredMessage()
deleteStoredMessage()
updateStoredMessage()
insertMessageLibrary()
deleteMessageLibrary()
updateMessageLibraryName()

validateMessageContent():void;

createLibrary(AccessToken token,string name):MessageLibrary
getLibraryList():MessageLibraryList

MessageLibraryFactoryImpl(MessageLibraryModule)

setName(AccessToken token, string name):void
createStoredMessage(AccessToken token,
 Message msg,
 string description,
 string category):StoredMessage
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean
isMessageUsedByAnyPlan(Identifier msgID):boolean
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void

MessageLibraryImpl(MessageLibraryModule)

getMessageData():StoredMessageData
getMessage():Message
setMessage(AccessToken, Message):void
setMessageData(AccessToken token,
 string description,
 string category,
 Message msg):void
 remove(AccessToken):void

StoredMessageImpl(MessageLibraryModule)

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

Figure 98. MessageLibraryModuleClasses (Class Diagram)

3.11.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor

R1B2 Servers Detailed Design Rev. 0 3-145 04/17/01

thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.11.1.1.2 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of
messaging devices are DMS, HAR etc.

3.11.1.1.3 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and is stored within
a DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.11.1.1.4 HARMessage (Class)

This utility class represents a message capable of being stored on a HAR. It stores the HAR
message as a HAR message header, body and footer. It contains methods to input and
output them in different formats.

3.11.1.1.5 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.11.1.1.6 MessageLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.11.1.1.7 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.11.1.1.8 MessageLibraryFactoryImpl (Class)

The MessageLibraryFactoryImpl class provides an implementation of the
MessageLibraryFactory interface as defined in the IDL. The MessageLibraryFactory
maintains a list of MessageLibraryImpl objects and is responsible for publishing
MessageLibrary objects in the Trader.

R1B2 Servers Detailed Design Rev. 0 3-146 04/17/01

3.11.1.1.9 MessageLibraryDB (Class)

The MessageLibraryDB class is a collection of methods that perform database operations
on tables pertinent to Message Library Management. The class is constructed with a
Connection Manager object, which manages database connections. Every operation in this
class obtains a connection to the database from the connection manager prior to performing
the requested DB operation.

3.11.1.1.10 MessageLibraryImpl (Class)

The MessageLibraryImpl class provides an implementation of the MessageLibrary interface
as specified in the IDL. The MessageLibrary maintains a list of StoredMessage objects and
is responsible for publishing StoredMessage objects in the Trader.

3.11.1.1.11 MessageLibraryModule (Class)

This class implements the ServiceApplicationModule interface. It creates and serves a
single MessageLibraryFactoryImpl object, which in turn serves MessageLibraryImpl
objects. This module also serves StoredMessage objects that were created in the message
libraries being served by this module.

3.11.1.1.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.11.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.11.1.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-147 04/17/01

3.11.1.1.15 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.11.1.1.16 StoredMessageImpl (Class)

The StoredMessageImpl class provides an implementation of the StoredMessage interface
as specified in the IDL.

R1B2 Servers Detailed Design Rev. 0 3-148 04/17/01

3.11.2 Sequence Diagrams

3.11.2.1 MessageLibraryModule:CreateDMSStoredMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for display on a
DMS device. The GUI will create a Message object based on the type of stored message the
user would like to create. In this case, a DMSMessage object is created. The message
library is called to create a stored message. The message library will check if the user has
the appropriate rights. If they do, the message will be checked for banned words. If the
message contains banned words, an error is returned. If not, a stored message is created, the
newly created stored message data is inserted into the database and the stored message
object will be published in the CORBA trading service and other system components will
be notified of its existence via the CORBA event service. Note that even though a
dictionary check is done at the time of storage, the dictionary is always checked on the
server side prior to allowing a message to be set on a DMS. The user and operation details
are logged in the operations log.

POA

activate_object

StoredMessage

validateBeaconState

[Invalid beacon state]
DisapprovedMessageContent

[Invalid beacon state]
DisapprovedMessageContent

[invalid beacon state]
delete

[Database error]
delete[Database error]

CHART2Exception

MessageLibraryDB OperationsLog TokenManipulator

insertStoredMessage

checkAccess

[no rights]
log

log("Stored Message Added")

Operator

Dictionary
CosEvent:

PushConsumer ServiceApplication

DMSMessage

To initiate this use case
the user selected "Add DMS
Stored Message" from the
 menu and enters the message

StoredMessageImpl

The user will choose ignore,
change, or AddWord for each
unknown word. See
AddApprovedWords sequence
diagram for details regarding
what happens then the user
chooses to add the word.

MessageLibraryImpl

createStoredMessage

[message contains
banned words]

DisapprovedMessageContent

push(StoredMessageAdded)

performApprovedWordsCheck

DictionarySuggestions for any unknown words

create

[no rights]
AccessDenied

create

validateMessageContent

checkForBannedWords[message contains
banned words]

DisapprovedMessageContent
[message contains

banned words]
delete

registerObject

Figure 99. MessageLibraryModule:CreateDMSStoredMessage

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-149 04/17/01

3.11.2.2 MessageLibraryModule:CreateHARStoredMessage (Sequence Diagram)

An operator with the correct functional rights may create a stored message for use on a
HAR device. The GUI will create a Message object based on the type of stored message the
user would like to create. In this case, a HARMessage object is created. A HARMessage
consists of three HAR message clips that can either be in binary or text format. The
message library is called to create a stored message. The message library will check if the
user has the appropriate rights. If they do, the message is validated by calling the Dictionary
to check for disapproved words. Note that only the clips that are in text format will be
checked for banned words. If the message contains banned words, an error is returned. If
not, a stored message is created, the newly created stored message data is inserted into the
database and the stored message object will be published in the CORBA trading service and
other system components will be notified of its existence via the CORBA event service.
Note that even though a dictionary check is done at the time of storage, the dictionary is
always checked on the server side prior to downloading the message to the HAR. The user
and operation details are logged in the operations log.

R1B2 Servers Detailed Design Rev. 0 3-150 04/17/01

setHeader

setBody

setTrailer

[message contains
banned words]

delete
[message contains

banned words]
DisapprovedMessageContent

log("Stored Message added")

ServiceApplication

StoredMessageImpl

The user will choose ignore,
change, or AddWord for each
unknown word. See
AddApprovedWords sequence
diagram for details regarding
what happens then the user
chooses to add the word.

MessageLibraryImpl

The user can choose to use
the default header and footer
instead of entering a header and
a footer.

Operator

Dictionary
CosEvent:

PushConsumer

HARMessage

To initiate this use case
the user selected "Add
HAR Text Stored Message"
from the menu and enters
the message.

[Database Error]
CHART2Exception

performApprovedWordsCheck

DictionarySuggestions for any unknown words

create

createStoredMessage

[no rights]
AccessDenied

create

validateMessageContent

[if text clip]
checkForBannedWords

[message contains
banned words]

DisapprovedMessageContent

resgisterObject

push(StoredMessageAdded)

StoredMessage

OperationsLogTokenManipulator MessageLibraryDB

checkAccess
[no rights]

log

insertStoredMessage

POA

activate_object

[* for each Clip]

Figure 100. MessageLibraryModule:CreateHARStoredMessage

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-151 04/17/01

3.11.2.3 MessageLibraryModule:CreateMessageLibrary (Sequence Diagram)

A user possessing the proper functional rights can add a Message Library to the system.
The library object is created and published via the CORBA Trading Service. An event is
pushed via the CORBA Event Service to notify interested parties of the new library. The
user and operation details are logged in the operations log.

MessageLibrary

log("Message Library added")

MessageLibraryFactoryImpl

ORBr

MessageLibraryImpl

CosEvent:PushConsumerServiceApplication

createLibrary

push(LibraryAdded)

registerObject

create

[no rights]
AccessDenied

TokenManipulator OperationsLogMessageLibraryDB

checkAccess
[no rights]

log

insertMessageLibrary[Database Error]
CHART2Exception

POA

activate_object

Figure 101. MessageLibraryModule:CreateMessageLibrary (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-152 04/17/01

3.11.2.4 MessageLibraryModule:DeleteMessageLibrary (Sequence Diagram)

A user with the proper functional rights can remove a Message Library from the system.
This will include the removal of all stored messages contained within the library. Since
stored messages may be used in Plans, a check is made for any plans that may contain the
stored messages being deleted and the user is warned. If the user acknowledges the
deletions, each message within the library is removed, events are pushed to notify others of
the action, and the library is removed from the Trading Service. The user and operation
details are logged in the operations log.

checkAccess

deleteMessageLibrary[Database error]
CHART2Exception

[Database error]
CHART2Exception

[Database error]
CHART2Exception

CosTrading:
RegisterStoredMessageImpl

log("Message Library deleted")

GUI MessageLibraryImpl

Operator

MessageLibraryFactoryImpl
CosEvent:

PushConsumerMessage

delete

isUsedByAnyPlan

[no rights]
AccessDenied

[* for each
Stored Message]

removeMessageLibrary

push(LibraryRemoved)

withdraw

removeLibrary

push(StoredMessageRemoved)

delete

withdraw

[no rights]
AccessDenied

[no rights]
AccessDenied

remove

[Plan using library]
Warn user

Plan Using Library

TokenManipulator MessageLibraryDB OperationsLog

See IsMessageLibraryUsedByAnyPlan
sequence digram for details.

checkAccess

[no rights]
log

deactivate_object

POA

deactivate_object

Figure 102. MessageLibraryModule:DeleteMessageLibrary (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-153 04/17/01

3.11.2.5 MessageLibraryModule:DeleteStoredMessage (Sequence Diagram)

A user with the proper functional rights may remove a stored message from the system.
Since a stored message may be used in a plan, a check is made to see if the message is used
in a plan so that the user can be warned accordingly. The act of deleting the stored message
involves deleting the message, updating the database and pushing an event to notify others
that the message has been removed from its library. The user and operation details are
logged in the operations log.

removeMessage

deleteStoredMessage

MessageLibraryDB OperationsLog

See IsStoredMessageUsedByAnyPlan
sequence duagram for details.

checkAccess
[no rights]

log

log("Stored Message deleted")

CosEvent:
PushConsumer

CosTrading:
RegisterStoredMessageImplGUI MessageLibraryImpl

Operator

Message

[no rights]
CHART2Exception

isMessageUsedByAnyPlan

[no rights]
AccessDenied

push(StoredMessageRemoved)

withdraw

remove

[PlanItem using
StoredMessage]

Warn User

[PlanItem is using StoredMessage]

removeMessage

[no rights]
AccessDenied

TokenManipulator

checkAccess

POA

deactivate_object

Figure 103. MessageLibraryModule:DeleteStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-154 04/17/01

3.11.2.6 MessageLibraryModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Message Library Module. This module is
created by a service that will host this module’s objects. A ServiceApplication is passed to
this module’s initialize method and provides access to basic objects needed by this module.
This module creates a Message Library Factory that in turn creates Message Library
objects. Message Library objects contain Stored Message objects that are created by the
Message Library DB at startup. The MessageLibraryFactory, MessageLibrary and
StoredMessage objects are published via the CORBA Trading service to make them
available for modifications (given the proper access rights) and usage.

StoredMessageList

CosTrading:Lookup

Note: DB creates the Stored
Messages of the appropriate
 message type and returns the objects.

[* for each Stored Message]
registerObject

getPOA

getServiceAppilcation

getMessageLibraryDB

getMessageLibraryDB

getPOA

getServiceApplication

[* for each Message Library]
create

activate_object(PushEventSupplier)

registerObject
(MessageLibraryFactoryImpl)

registerObject
(PushEventSupplier)

getPOA

activate_object(MessageLibraryFactoryImpl)

[* for each MessageLibraryImpl]
activate_object

[* for each
Stored Message]
activate_object

query(Dictionary)
Dictionary

Application Service

MessageLibraryModule ServiceApplication

MessageLibraryFactoryImpl

MessageLibraryImpl

MessageLibraryDB

PushEventSupplier

POA

create

getProperties

create

getTradingLookup

initialize

getTradingRegister

getDBConnectionManager

getEventChannelFactory

create

getMessageLibraryList

getStoredMessages

[* for each MessageLibraryImpl]
registerObject

getDefaultProperties

Figure 104. MessageLibraryModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-155 04/17/01

3.11.2.7 MessageLibraryModule:IsMessageLibraryUsedByAnyPlan(Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using the stored messages
of a particular message library.

[isUsing a Sttored Message]
true

Plan

[* for each Plan]
isUsingObject

GUI

MessageLibraryImpl CosTrading:LookupPlanItem

[plan using library]
true

isUsedByAnyPlan

query
[all plans]

[* for each PlanItem]
isUsingObject

[is using a Stored Message]
true

Figure 105. MessageLibraryModule:IsMessageLibraryUsedByAnyPlan

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-156 04/17/01

3.11.2.8 MessageLibraryModule:IsStoredMessageUsedByAnyPlan (Sequence Diagram)

This sequence diagram shows how a user can check if a plan is using a particular stored
message.

Plan

[* for each Plan]
isUsingObject

[is using StoredMessage]
true

GUI

MessageLibraryImpl CosTrading:LookupPlanItem

isMessageUsedByAnyPlan

query
[all plans]

[* for each PlanItem]
isUsingObject

[is using Stored Message]
true

[plan using Message]
true

Figure 106. MessageLibraryModule:IsStoredMessageUsedByAnyPlan

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-157 04/17/01

3.11.2.9 MessageLibraryModule:ModifyDMSStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored message. The proposed contents
for the stored message are checked against the dictionary prior to allowing the new content
to be set. The state of the beacons associated with the message is also checked to make sure
the beacons are not turned on for a message with no text. An event is pushed via the
CORBA Event Service to notify others of the change to the stored message’s contents. The
user and operation details are logged in the operations log.

getMultiString

getBeaconState

setBeaconState

[invalid beacon state]
DisapprovedMessageContent

[message contains banned words]
DisapprovedMessageContent

validateBeaconState

[invalid beacon state]
DisapprovedMessageContent

MessageLibraryDB

checkAccess

[no rights]
log

updateStoredMessage

DMSMessage Dictionary CosEvent:PushConsumerStoredMessageImpl
Operator

The user will alter
their message text
by either ignoring
the suggestion, using
the suggestion, or
adding the word to
the dictionary.

log("Stored Message modified")

setMultiString

getMessageData

performApprovedWordsCheck

DictionarySuggestion for each unknown word

validateMessageContent

push(StoredMessageChanged)

[message contains banned words]
DisapprovedMessageContent

checkForBannedWords

[no rights]
AccessDenied

setMessageData

[Database error]
CHART2Exception

TokenManipulator OperationsLog

User is shown the current
contents of the message in
a Message editor dialog box
to edit the message.

Figure 107. MessageLibraryModule:ModifyDMSStoredMessage

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-158 04/17/01

3.11.2.10 MessageLibraryModule:ModifyHARStoredMessage (Sequence Diagram)

A user with the proper functional rights can edit a stored HAR message. The proposed
contents for the stored message are checked against the dictionary if it is in text format. An
event is pushed via the CORBA Event Service to notify others of the change to the stored
message’s contents. The user and operation details are logged in the operations log.

[if HAR text message and
message contains banned words]

DisapprovedMessageContent

[if text clip]
checkForBannedWords

[no rights]
AccessDenied

setMessageData

push(StoredMessageChanged)

[Database error]
CHART2Exception

performApprovedWordsCheck

DictionarySuggestion for each unknown word

setBody

"Format HAR Message"

User is shown the current
contents of the message in
a Message editor dialog box
to edit the message.

[if HAR text message and
message contains banned words]

DisapprovedMessageContent

OperationsLogMessageLibraryDBTokenManipulator

checkAccess

getBody

getMessageData

validateMessageContent

[* for each Clip]

log("no rights")

updateStoredMessage

log("Stored Message modified")

HARMessageImpl

The user will alter
their message text
by either ignoring
the suggestion, using
the suggestion, or
adding the word to
the dictionary.

Dictionary CosEvent:PushConsumerStoredMessageImpl
Operator

Figure 108. MessageLibraryModule:ModifyHARStoredMessage

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-159 04/17/01

3.11.2.11 MessageLibraryModule:SetLibraryName (Sequence Diagram)

A user with the proper functional rights may set the name assigned to a message library. An
event is pushed via the CORBA Event Service to notify others of the name change. The
user and operation details are logged in the operations log.

ORB

TokenManipulator MessageLibraryDB OperationsLogMessageLibraryImpl PushEventSupplier

[database error]
CHART2Exception

push(LibraryNameChanged)

checkAccess

[no rights]
AccessDenied

[no rights]
log

log("Library Name Changed")

setName

updateMessageLibraryName

Figure 109. MessageLibraryModule:SetLibraryName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-160 04/17/01

3.11.2.12 MessageLibraryModule:Shutdown (Sequence Diagram)

The MessageLibraryModule is shutdown by its host application. When told to shutdown,
the MessageLibraryModule deactivates the MessageLibraryFactory from the POA, and
shuts down the object. When the MessageLibraryFactory is shut down, deactivates each
library from the POA and shuts down the object. The MessageLibrary deactivates any
StoredMessage objects that it is serving.

MessageLibraryImpl

Application Service

MessageLibraryModule MessageLibraryFactoryImpl CosTrading.RegisterPOA

shutdown

shutdown

success

StoredMessage

shudown

shutdown

[* for each Stored Message]
deactivate_object

[* for each Message Library Impl]
deactivate_object

deactivate_object(MessageLibraryFactoryImpl)

deactivate_object(PushEventSupplier)

Figure 110. MessageLibraryModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-161 04/17/01

3.11.2.13 MessageLibraryModule:ViewDMSStoredMessage (Sequence Diagram)

The GUI discovers the contents of a DMS stored message during startup. The GUI is
notified of changes to the contents of the DMS stored message via a CORBA event
channel. When notified of such changes, the GUI updates itself so the user is always shown
the latest information pertaining to the DMS stored message. The user and operation details
are logged in the operations log.

setBeaconState

CosTrading:Register

Operator

DMSMessageStoredMessage

Operator

All the status updates for
StoredMessage objects are
notified to the operator by pushing
events through the CORBA event service .

All StoredMessage objects
are published in the trader.
At startup a list of all the
StoredMessage objects
is obtained by querying the trader.

CosEvent:PushConsumer

setMultiString

getBeaconState

push(StoredMessageChanged)

getMultiString

push(StoredMessageChanged)

setMessage

create

query
[for all StoredMessage objects]

getMessage

Figure 111. MessageLibraryModule:ViewDMSStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-162 04/17/01

3.11.2.14 MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram)

The GUI discovers the contents of a HAR stored message during startup. The GUI is
notified of changes to the contents of the HAR stored message via a CORBA event channel.
When notified of such changes, the GUI updates itself so the user is always shown the latest
information pertaining to the HAR stored message. The user and operation details are
logged in the operations log.

To initiate this the user
selected "Play Message"
from the menu.

getNext
[while "getNext
returns more
AudioData"]

"Start Playing
 Audio Data"

"Play Audio Data"

destroy

TTSConverter

AudioDataIterator

convertTextToSpeech

create

AudioDataIterator + First Audio Data Chunk

StoredMessage

Operator

All the status updates for
StoredMessage objects are
notified to the operator by pushing
events through the CORBA
event service .

CosEvent:PushConsumer

All StoredMessage objects
are published in the trader.
At startup a list of all the
StoredMessage objects
is obtained by querying the trader.

CosTrading:Register

Operator

HARMessage

getBody

push(StoredMessageChanged)

TTSConverter will call
the TTS Engine API to
convert text to speech "Say"

create

getMessage

query
[for all HARStoredMessage objects]

getFooter

setHeader

setBody

setTrailer

setMessage

getHeader

push(StoredMessageChanged)

Figure 112. MessageLibraryModule:ViewHARStoredMessage (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-163 04/17/01

3.12 PlanModule

3.12.1 Classes

3.12.1.1 PlanModuleClasses (Class Diagram)

This is an installable module that serves the PlanFactory, Plan, and PlanItem objects to the
rest of the CHART2 system.

*

1

ServiceApplication
11

11

1

1

1

PlanItemData

1

1

1

*

1

*

1

1

*

1

*

1

1

1

PlanDB

PushEventSupplier

PlanModule

ServiceApplicationModule

PlanFactoryImpl

PlanFactory

PlanImpl

Plan

PlanItem

DBConnectionManager

* 1

11

1

PlanItemImpl

PlanItemImpl(PlanImpl, PushEventSupplier,
 PlanDB, PlanItemData)

m_id
m_name
m_planItemData

createPlan(AccessToken token,
 string name):Plan
getPlans():PlanList

setName(AccessToken,string):void
addItem(AccessToken,PlanItemData):PlanItem
removeItem(AccessToken,PlanItem):void
getItems():PlanItemList
remove(AccessToken):void
isUsingObject(IdentifierList objectIDs)

setName(AccessToken, string):void
setData(AccessToken, PlanItemData):void
getData():PlanItemData
remove(AccessToken):void
getPlanID():Identifier
isUsingObject(IdentifierList):boolean

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

PlanFactoryImpl(ServiceApplication, PushEventSupplier, PlanDB)
getPlanOfferIDs()
removePlan(Object)
shutdown

m_devicePlanCollection
m_offertIDs

PlanImpl(ServiceApplication , PushEventSupplier, PlanDB, PlanFactoryImpl)
removeItem()

m_id
m_name

getPlanList
insertPlan
deletePlan
insertPlanItem
deletePlanItem
getPlanItems
setPlanName

Figure 113. PlanModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-164 04/17/01

3.12.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.12.1.1.2 Plan (Class)

A Plan is a group of actions listed out in advance to be used in response to a traffic event.
Each action is defined to be a Plan item. The Plan supports functionality to add and remove
plan items.

3.12.1.1.3 PlanDB (Class)

This class contains the methods that perform database operations for the Plan module. It is
constructed with a Database object that provides the connections to the database server. All
the methods in this class get a new connection to the database before performing any
operation on the database. The connection is released at completion of the operation.

3.12.1.1.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.12.1.1.5 PlanFactoryImpl (Class)

This class implements the PlanFactory interface and enables the management of the Plan
objects by other processes. It creates, publishes and deletes the objects that implement the
Plan interface.

3.12.1.1.6 PlanImpl (Class)

This class implements the Plan interface and provides the implementation for the methods
defined in the interface. It also manages the database operations for the PlanItems contained
in this Plan.

R1B2 Servers Detailed Design Rev. 0 3-165 04/17/01

3.12.1.1.7 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.12.1.1.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.12.1.1.9 PlanItemImpl (Class)

This class implements the PlanItem interface.

3.12.1.1.10 PlanModule (Class)

This module creates, publishes and deletes the objects that implement the PlanFactory
interface.

3.12.1.1.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.12.1.1.12 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.12.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-166 04/17/01

3.12.2 Sequence Diagrams

3.12.2.1 PlanModule:AddItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can add an item to
an existing plan in the system. An AccessDenied exception is returned if the user does not
have the right to add an item to the plan. Otherwise, a PlanItem object is created and added
to the database. A PlanItemAdded event is pushed through the event channel to notify other
processes that a plan item has been added to this plan. User actions are logged to the
operations log.

POA

activate_object(PlanItemImpl)

ServiceApplicationrPlanDB

PlanItemImpl

PushEventSupplier

push(PlanItemAdded)

log(PlanItemAdded)

[Database error]
CHART2Exception

ORB

PlanImpl

addItem

TokenManipulator OperationsLog

checkAccess

[no rights]
log[no rights]

AccessDenied

insertPlanItem

create

registerObject(PlanItemImpl)

Figure 114. PlanModule:AddItem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-167 04/17/01

3.12.2.2 PlanModule:AddPlan (Sequence Diagram)

This diagram shows how a user with proper functional rights can add a plan to the system.
An AccessDenied exception is returned if the user does not have the functional right to add
a plan. Otherwise, the plan object is created and added to the database. The plan object is
published in CORBA Trader service and a PlanAdded event is pushed through the event
channel to notify the other processes that a new plan has been added.

POA

activate_object(PlanImpl)

[Database error]
CHART2Exception

OperationsLog

Plan

PushEventSupplier

ORB

ServiceApplication

createPlan

TokenManipulator

checkAccess

[no rights]
log[no rights]

AccessDenied

PlanFactoryImpl

PlanImpl

PlanDB

registerObject(Plan)

push(PlanAdded)

insertPlan

log(PlanAdded)

create

Figure 115. PlanModule:AddPlan (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-168 04/17/01

3.12.2.3 PlanModule:Initialize (Sequence Diagram)

This sequence diagram shows the startup for the Plan Module. An ApplicationService will
initialize this module. The references to basic services such as POA, Trader, Event channel
and database are obtained from the ServiceApplication. This module creates a Plan Module
specific database object. It also creates the PlanFactory object, which creates the Plan
objects from the plan list obtained from the database. The Plan objects are published in the
trader. An event channel is created to push the events to clients and it is published in the
trader register. The Offer IDs of all the objects that were published in the trader are saved to
a file so that they may be withdrawn.

registerObject(PlanItem)

registerObject(Plan)

create

ServiceApplication

PlanFactoryImpl

PlanImpl

PlanDB

initialize

getDBConnectionManager

getEventChannelFactory

create

getPlanList

create

getPlanItems

PushEventSuppliercreate

registerObject
(PushEventSupplier)

getProperties

Application Service

PlanModule

getDefaultProperties

getTradingLookup

registerObject
(PlanFactoryImpl)

POA

activate_object(PlanItem)

activate_object(PushEventSupplier)

activate_object(PlanFactoryImpl))

getPOA

[* for each PlanItem]

activate_object(PlanImpl)

[* for each Plan]

Figure 116. PlanModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-169 04/17/01

3.12.2.4 PlanModule:PlanIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan is using a particular set of objects.
The IDs of the object are passed to the Plan object to check if its PlanItems are using these
objects. If a PlanItem is using any object, the Plan returns true.

ORB

PlanFactoryImpl PlanImpl PlanItem

isUsingObject

isUsingObject

isUsingObject

false

[if none of the PlanItems are
using this object]

false

[* for each PlanItem]

true[Plan Item Using Object]
true

[* for each Plan]

[Plan Item Using Object]
true

Figure 117. PlanModule:PlanIsUsingObject (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-170 04/17/01

3.12.2.5 PlanModule:PlanItemIsUsingObject (Sequence Diagram)

This sequence diagrams shows how to check if a plan item is using an object from a set of
objects. The IDs of the objects are passed to the PlanItem object. If the PlanItem is using
any object, it returns true.

ORB

PlanItem PlanItemData

isUsingObject

true or false

isUsingObject

[if using]
true

[if not using]
false

Figure 118. PlanModule:PlanItemIsUsingObject (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-171 04/17/01

3.12.2.6 PlanModule:RemoveItem (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can remove a plan
item from a plan in the system. An AccessDenied exception is returned if the user does not
have the right to remove an item from the plan. Otherwise, the plan item is deleted from the
database and the object is destroyed. An event is pushed through the event channel to notify
other processes that the plan item has been removed from the plan. User actions are logged
to the operations log.

[Database error]
CHART2Exception

removeItem

OperationsLog

checkAccess

PlanImpl

remove

CosTrading.Register

withdraw(PlanItem)

POA

deactivate_object(PlanItem)

PlanItem PlanDB

deletePlanItem

log(PlanItemRemoved)

PushEventSupplier

push(PlanItemRemoved)

ORB

[Database error]
CHART2Exception

[AccessDenied]
log(AccessDenied)[no right]

AccessDenied

TokenManipulator

Figure 119. PlanModule:RemoveItem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-172 04/17/01

3.12.2.7 PlanModule:RemovePlan (Sequence Diagram)

This sequence diagram shows how a user with proper rights can delete a Plan from the
system. An AccessDenied exception is returned if the user does not have the functional
right to delete a Plan. Otherwise, the Plan is deleted from the database and the object is
destroyed. The Plan is withdrawn from the trader and a PlanRemoved event is pushed
through the event channel to notify the clients that the plan has been deleted. Note that the
deletion of a plan results in the deletion of all the plan items that are used in the plan from
the system and the database. The user actions are logged to the operations log.

log(PlanItem removed)

POA

[no rights]
log

deactivate_object(PlanItem)

withdraw(PlanItem)

[* for each PlanItem]

push(PlanItemRemoved)

PushEventSupplierPlanImpl PlanItem OperationsLog

remove

remove

[Database error]
CHART2Exception

push(PlanRemoved)

log(PlanRemoved)

TokenManipulator PlanDB

checkAccess

[no rights]
AccessDenied

PlanFactoryImpl CosTrading.Register

removePlan(this)

deletePlanItem

ORB

Figure 120. PlanModule:RemovePlan (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-173 04/17/01

3.12.2.8 PlanModule:RemovePlanFromFactory (Sequence Diagram)

This sequence diagram shows how a Plan object is removed from the Plan Factory when a
Plan is deleted from the system.

PlanFactoryImpl CosTrading.Register POA PlanDB

deactivate_object(PlanImpl)

withdraw(PlanImpl)

deletePlan

"Remove Object from List"

removePlan(Obj)

"Find Object in the List"

Caller

Figure 121. PlanModule:RemovePlanFromFactory (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-174 04/17/01

3.12.2.9 PlanModule:SetPlanItemData (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the
PlanItemData object of a plan item. An AccessDenied exception is returned if the user does
not have the right to modify the plan item. Otherwise, the PlanItemData is updated and
stored in the database. An event is pushed through the event channel to notify other
processes that the plan item has been changed. User actions are logged to the operations
log.

ORB

OperationsLogPlanDB PushEventSupplierPlanItemImpl TokenManipulator

log(Plan Item Data Changed)

setData

checkAccess

[no rights]
log[no rights]

AccessDenied

[Database error]
CHART2Exception

setPlanItemData

push(PlanItem Changed)

Figure 122. PlanModule:SetPlanItemData (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-175 04/17/01

3.12.2.10 PlanModule:SetPlanItemName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can change the name
of a plan item. An AccessDenied exception is returned if the user does not have the right to
change the plan item name. Otherwise, the plan item name is changed and stored in the
database. An event is pushed through the event channel to notify other processes that the
plan item has been changed. User actions are logged to the operations log.

ORB

OperationsLogPlanDB PushEventSupplierPlanItemImpl TokenManipulator

log(Plan Name Changed)

setName

checkAccess

[no rights]
log[no rights]

AccessDenied

[Database error]
CHART2Exception

setPlanItemName

push(PlanItemChanged)

Figure 123. PlanModule:SetPlanItemName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-176 04/17/01

3.12.2.11 PlanModule:SetPlanName (Sequence Diagram)

This sequence diagram shows how a user with proper functional rights can set the name of
a Plan. An access denied exception is returned if the user does not have the right to change
the name. Otherwise, the name is changed and the database is updated. An event id pushed
via the CORBA event service to notify others of the new Plan name. The user actions are
logged to the operations log.

PlanImpl TokenManipulator

setName

checkAccess

[no rights]
log[no rights]

AccessDenied

[Database error]
CHART2Exception

OperationsLogPlanDB PushEventSupplier

setPlanName

push(Plan Name Changed)

log(Plan Name Changed)

ORB

Figure 124. PlanModule:SetPlanName (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-177 04/17/01

3.12.2.12 PlanModule:Shutdown (Sequence Diagram)

This diagram shows the shutdown sequence of the Plan module. All the Plan objects that
were published in the trader by the PlanFactory and the PlanFactory itself are withdrawn
and destroyed. The event channel is also withdrawn from the trader and destroyed.

deactivate_object(PlanItemImpl)

delete

delete

deactivate_object(PusEventSupplier)

PlanItemImpl

[* for each Plan]

[* for each PlanItem]

shutdown

shutdown

PushEventSupplierPlanImpl

Application Service

PlanModule PlanFactoryImpl

delete

success

shutdown

POA

deactivate_object(PlanImpl)

deactivate_object(PlanFactoryImpl)

delete

Figure 125. PlanModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-178 04/17/01

3.13 ResourcesModule

3.13.1 Classes

3.13.1.1 ResourceClasses (Class Diagram)

This diagram shows the classes in the ResourcesModule, an installable service module that
serves objects that implement the Organization and OperationsCenter interfaces.

* OperationsCenterImpl

*

ServiceApplicationModule

*

OperationsCenter

Organization

ResourcesModule

1

OperationsCenterDB

*

1

1

11

ORB

1

1

1

1

ServiceApplication

UserLoginSession

*

1

CosTrading.Lookup

1

UserManagementDB

OrganizationImpl

getUsers
getRoles
getUser
getUserRoles
getUserPassword
setUserPassword
createRole
deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
createUser
deleteUser
grantRole
revokeRole
setUserPassword
setUserRoles
getUserProfile
deleteUserProfile
getUserProfileProperties
setUserProfileProperties
deleteProfileProperty
getSystemProfile
getSystemProfileProperties
setSystemProfileProperties

DBConnectionManager m_db;

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

query

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

loginUser(UserLoginSession loginSession,
 UserName name,
 string password,
 string hostname):AccessToken
logoutUser(AccessToken token,
 UserLoginSession loginSession):void
changeUser(AccessToken token,
 UserLoginSession oldSession,
 UserLoginSession newSession,
 UserName userName,
 string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions():LoginSessionList
forceLogout(AccessToken token,
 UserLoginSession loginSession):void
isUserLoggedIn(UserName userName):boolean
getNumLoggedInUsers():long
transferSharedResources(AccessToken token,
 SharedResourceList resources,
 OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
 string password):boolean
addResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
removeResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
getResponseParticipants() : ResponseParticipant[]

ResourcesModule()

m_application

OperationsCenterDB(DBConnectionManager db)
getOperationsCenters
getOrganizations
storeLoginSessions
getLoginSessions
getUserFunctionalRights

DBConnectionManager m_db

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean
void forceLogout(AccessToken token)

OperationsCenterImpl(ORB orb, Database db, CosTrading.Lookup traderLookup)
- lookupLoginSession
- removeLoginSession
- addLoginSession

Figure 126. ResourceClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-179 04/17/01

3.13.1.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.13.1.1.2 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.13.1.1.3 OperationsCenterDB (Class)

This class provides a set of API calls to access the Operations Center data from the
database. The API’s provide functionality to add, remove and retrieve Operation Center
data from the database. The connection to the database is acquired from the Database object
that manages all the database connections.

3.13.1.1.4 OperationsCenterImpl (Class)

This class provides the implementation of the OperationsCenter interface for this module.
It, therefore, provides a concrete implementation of each of the methods in the interface. It
also contains a collection of UserLoginSession objects, one for each user who is currently
logged in.

3.13.1.1.5 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.13.1.1.6 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 Servers Detailed Design Rev. 0 3-180 04/17/01

3.13.1.1.7 OrganizationImpl (Class)

This class provides the implementation of the Organization interface for this module. Thus,
it provides a concrete implementation of each of the methods in the interface.

3.13.1.1.8 ResourcesModule (Class)

This module creates, publishes and destroys all objects related to resource management that
are used by the User Management service application.

3.13.1.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.13.1.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.13.1.1.11 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

3.13.1.1.12 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User
Managment data in the database. This class uses a Database object to retrieve a connection
to the database for its exclusive use during a method call.

R1B2 Servers Detailed Design Rev. 0 3-181 04/17/01

3.13.2 Sequence Diagrams

3.13.2.1 ResourcesModule:ChangeUser (Sequence Diagram)

A client with the correct functional rights may select to relinquish his/her workstation to
another operator. This typically will happen at shift change. This sequence logs the new
operator in before logging the old operator out, thereby guaranteeing that the shared
resources controlled by the operations center have a responsible operator during the
transition. If this method throws any type of exception, the old user is still logged in and the
new user is not. If this method returns a token, the old user is logged out and the new user is
logged in.

OperationsCenterDB

Remove the old
LoginSession and
store the new one. addLoginSession

removeLoginSession

Remove the new login
session because the old
one could not be logged
off.

[logout failure]
removeLoginSession

log

ORB

OperationsCenter UserManagementDB OperationsLog

getUserFunctionalRights

delete

[* for each functional right]
add

changeUser

getUserPassword

LoginFailure

[LoginFailure]
log

Token

LogoutFailure

create TokenManipulator

If the login session
specified is not a valid
login session for a logged
in user.

Figure 127. ResourcesModule:ChangeUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-182 04/17/01

3.13.2.2 ResourcesModule:ForceLogout (Sequence Diagram)

A client with the correct functional rights may force a particular user to logout of the
CHART2 system. This is actually accomplished in two steps. The client would first need to
acquire a UserLoginSession object before calling this method, please refer to the sequence
diagram for the getUserLoginSessions method for details. Once the user has acquired a
UserLoginSession he/she may contact the Operations Center where that UserLoginSession
is being tracked and inform it that the user should be forced to logout. The
OperationsCenter will call the forceLogout method on the specified UserLoginSession after
removing the login session from its internal collection of login sessions. Note that it is
possible for the user to call the forceLogout method directly on the UserLoginSession
without informing the OperationsCenter. This method of forcing a user to logout is also
accepted. If this path is taken, the operations center will contain a reference to a
UserLoginSession that is no longer valid. This possibility is accounted for by pinging the
UserLoginSession objects each time the getNumLoggedInUsers() method is called. Please
refer to that sequence diagram for details.

forceLogout

lookupLoginSession

OperationsLog

removeLoginSession

forceLogout

UserLoginSession

checkAccess

log

AccessDenied
AccessDenied

[access denied]
AccessDenied

[AccessDenied]
log

[AccessDenied]
log

TokenManipulatorcreate

checkAccess

deleteThrown if an error
occurs forcing the
user login session to
logout [LogoutFailure]

LogoutFailure

TokenManipulator

ORB

OperationsCenterImpl

Figure 128. ResourcesModule:ForceLogout (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-183 04/17/01

3.13.2.3 ResourcesModule:GetControlledResources (Sequence Diagram)

A client may request a list of all shared resources that are currently controlled by this
operations center. This would typically happen if the user were looking to transfer
responsibility for some of all of the controlled shared resources from one operations center
to another. The operations center will contact each shared resource manager in the system
and get a list of resources that it is currently controlling. The lists returned by each shared
resource manager will be combined and the entire list of controlled resources will be
returned to the user.

ORB

CosTrading.Lookup SharedResourceManager

getControlledResources
query

[* for each SharedResourceManager]
getControlledResources

OperationsCenterImpl

Get the shared
resource managers
from the trader.

Figure 129. ResourcesModule:GetControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-184 04/17/01

3.13.2.4 ResourcesModule:GetLoginSessions (Sequence Diagram)

A client with the correct functional rights may get a list of UserLoginSessions that
represents the list of users who are currently logged in from this operations center.

[access denied]
AccessDenied

list of sessions

log

OperationsCenterImpl OperationsLogTokenManipulator

ORB

getLoginSessions

checkAccess

[AccessDenied]
log

Figure 130. ResourcesModule:GetLoginSessions (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-185 04/17/01

3.13.2.5 ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

This method allows a client to get the number of users who are currently logged in at this
operations center. This method will be used by the shared resource manager watchdogs to
verify that they do not have shared resources which are under the control of operations
centers with no users logged in. This method will ping each UserLoginSession before
counting it as a valid login session. The ping protects the system from counting login
sessions from GUI’s which have been turned off or disconnected without performing a
proper logout.

[*for each login session]
ping

ORB

OperationsCenterImpl

Return number of successfully
pinged user login sessions

UserLoginSession

getNumLoggedInUsers

[ping fails]
removeLoginSession

Figure 131. ResourcesModule:GetNumLoggedInUsers (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-186 04/17/01

3.13.2.6 ResourcesModule:Initialize (Sequence Diagram)

When the service is started, the service application will call initialize on this module. The
module will create the operations center and organization imlementation objects which are
found in the database, connect them to the ORB and export them in the trading service so
that other applications may locate them.

getORB
initialize

success

OperationsCenterDB

getOperationsCenters

OrganizationImpl

Each OperationsCenterImpl and
OrganizationImpl created will be
connected to the ORB.

getOrganizations

create

Each OperationsCenterImpl and
OrganizationImpl will be exported
to the trader.

export

Store Offer ID

UserManagementResourcesModule

Service Application

create

connect

Please refer to the
OperationsCenterImpl
initialization sequence diagram
for details on the creation of this
object.

getDBConnectionManager

getTradingLookup

CosTrading.RegisterServiceApplication ORB

OperationsCenterImpl

Store the ID of
each object offer so
they may be retracted later.

getTradingRegister

Figure 132. ResourcesModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-187 04/17/01

3.13.2.7 ResourcesModule:IsUserLoggedIn (Sequence Diagram)

This sequence diagram shows the steps taken to determine if a user is currently logged in to
the system.

[userName found]
return true

[* for each login session]
getUserName

OperationsCenterImpl

ORB

return false

isUserLoggedIn

UserLoginSession

Figure 133. ResourcesModule:IsUserLoggedIn (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-188 04/17/01

3.13.2.8 ResourcesModule:LoginUser (Sequence Diagram)

An client may login to the system. The system will verify that the user has specified the
correct password by looking in the user database. If the user has specified the correct
password, the system will create a token that contains the user’s functional rights and will
return it to the invoking client. The login session will be stored internally in the operations
center in order to allow the center to respond to calls regarding shared resource control.

TokenManipulator

getUserFunctionalRights

ORB

OperationsCenterImpl UserManagementDB OperationsLog

loginUser

getUserPassword

[wrong password]
LoginFailure

[wrong password]]
log

Token

log

addLoginSession

createToken

[* for each functional right]
add

Figure 134. ResourcesModule:LoginUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-189 04/17/01

3.13.2.9 ResourcesModule:LogoutUser (Sequence Diagram)

A client may log out of the system. When an operator does this, the system will ping each
user login session it is tracking to verify the actual number of users who are currently
logged in. If the current number of valid login sessions for this operations center is one,
then this user cannot be allowed to logout if this operations center is currently controlling
shared resources. In order to determine if the operations center has controlled resources, the
system will contact all of the shared resource managers. If the operations center has
controlled resources an exception will be thrown, otherwise the user will be logged out.

[Invalid login session
or Couldn't be pinged]

LogoutFailure

removeLoginSession

ORB

OperationsCenterImpl OperationsLog

logoutUser

log

Find all shared
resource managers

CosTrading.Lookup SharedResourceManager

[if login session count == 1]
query

[* for each SharedResourceManager]
hasControlledResources

[last user &&
has Controlled Resources]
HasControlledResources

UserLoginSession

count the number
of login sessions
which are successfully
pinged

[* for each login session]
ping

Figure 135. ResourcesModule:LogoutUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-190 04/17/01

3.13.2.10 ResourcesModule:OperationsCenterImplInitialization (Sequence Diagram)

This sequence shows the details of constructing an operations center implementation object.
An operations center is responsible for tracking the list of currently logged in users. When
the service is shutdown it will store the list in the database. When the service is restarted it
will get this list of login sessions from the database. Because the service may have been
down for an extended period, the login sessions may no longer be valid due to users logging
out or shutting down their client machines. Thus, each login session object will be pinged to
see if it is still active. If it is, the operations center will add it to the list of current sessions
otherwise it will not.

At shutdown each login
session was stored in the
database. Now we will reconstruct
the login session reference and
ping it to make sure it is still running.
If it is, it will be added to the list of
current logins otherwise it will be
discarded.

ServiceApplicationModule

OperationsCenterImpl ORBOperationsCenterDB

Creates a
UserLoginSession
reference.

UserLoginSessioncreate

getLoginSessions

string_to_object

ping

[if ping successful]
addLoginSession

Figure 136. ResourcesModule:OperationsCenterImplInitialization

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-191 04/17/01

3.13.2.11 ResourcesModule:Shutdown (Sequence Diagram)

When the service application calls the shutdown method on this module, the module will
withdraw all exported offers from the trader, disconnect any objects that it is currently
serving from the ORB and destroy them. The operations center will also store the current
list of UserLoginSession references in the database. This will allow the login sessions to be
reconstructed at startup.

ServiceApplication ORBOrganizationImpl

Service Application

UserManagementResourcesModule

delete

disconnect

getTradingRegister

getORB

shutdown

success

CosTrading.Register

Withdraws all
offers made at
startup.

withdraw

object_to_string

OperationsCenterImpl OperationsCenterDB

Persist each of the
currently stored
UserLoginSessions. On
startup we will reconstruct
them and ping to ensure
they are still valid.

delete

storeLoginSessions

Figure 137. ResourcesModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-192 04/17/01

3.13.2.12 ResourcesModule:TransferSharedResources (Sequence Diagram)

A client with the correct functional rights may transfer the control of shared resources from
this operations center to another. The system will verify that there are users logged in at the
target operations center and will then transfer control of the shared resources if there are.

Do this for each shared
resource passed.

log

getControllingOpCenter

Invoked on the
target operations
center.

getNumLoggedInUsers
[numLoggedInUsers < 1]
InvalidOperationsCenter

SharedResource

Pass the ID & Name
 of the target
Operations Center

checkAccess

[access denied]
AccessDenied

[AccessDenied]
log

getID

[if controlling op center is this op center]
setControllingOpCenter

getName

Thrown if no login
sessions are active
at the target operations
center

ORB

OperationsCenterImpl TokenManipulator OperationsLog

transferSharedResources

OperationsCenter

Figure 138. ResourcesModule:TransferSharedResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-193 04/17/01

3.14 SHAZAMControl

3.14.1 Classes

3.14.1.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects.
The class diagram below shows the classes used to implement these system interfaces.
Details are only shown for classes in the SHAZAMControlModule package.

SHAZAMRefreshCmd

java.util.TimerTask

VikingRc2aSHAZAM
1 1

java.util.Timer

SHAZAMControlModuleProperties

1

1

1

1

1

1

1

1

1

1

1

2 1

SharedResourceCheckTimerTask

1

UniquelyIdentifiable

*

SHAZAMControlModule

ServiceApplicationModule ServiceApplication

SHAZAMControlDB

PushEventSupplier

1

1

1

1

1

1

HARMessageNotifier

SHAZAM

SHAZAMImpl
SHAZAMFactory

SHAZAMFactoryImpl

SharedResourceManager

CommandQueue

SHAZAMConfiguration

SHAZAMStatus

QueueableCommand

SHAZAMActivateCmd SHAZAMDeactivateCmd SHAZAMPutOnlineCmd

2

1 CommEnabledSharedResource GeoLocatable

1 11

1

1

1

SHAZAMPutInMaintModeCmd SHAZAMTakeOfflineCmd SHAZAMSetConfigurationCmd

RefreshSHAZAMTimerTask

1

*

1

SHAZAMImpl m_shazam

SHAZAMFactoryImpl m_factory

SHAZAMFactoryImpl m_factory

getSHAZAMs():SHAZAMImpl[]
updateStatus():void
updateConfiguration():void

DBConnectionManager m_db

SHAZAMImpl(SHAZAMFactoryImpl,
 SHAZAMControlDB,
 PushEventSupplier):
 SHAZAMImpl
refresh():void

long m_lastRefresh
TrafficEvent m_trafficEvent

SHAZAMFactoryImpl(byte[] id,
 ServiceApplication serviceApp,
 SHAZAMControlDB db,
 PushEventSupplier evtRes,
 PushEventSupplier evtSHAZAM,
 RecurringTimer timer,
 long resMonIntSecs)
removeSHAZAM():void
doSharedResourcesCheck():void
doRefreshShazamsCheck():void

java.lang.Vector m_SHAZAMList

boolean m_maintMode
byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status
TrafficEvent m_trafficEvent

boolean m_maintMode
byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status
SHAZAMConfiguration m_config

getSHAZAMRefreshTimerMins():long
getSharedResMonIntSecs():long
getSHAZAMFactoryID():byte[]

Figure 139. SHAZAMControl (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-194 04/17/01

3.14.1.1.1 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.14.1.1.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.14.1.1.3 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.14.1.1.4 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.14.1.1.5 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.14.1.1.6 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

R1B2 Servers Detailed Design Rev. 0 3-195 04/17/01

3.14.1.1.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.14.1.1.8 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.14.1.1.9 RefreshSHAZAMTimerTask (Class)

This class is a task to be invoked periodically by a timer. When invoked, this class will call
a method in the SHAZAMFactoryImpl to have it tell each SHAZAM to refresh if
necessary.

3.14.1.1.10 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.14.1.1.11 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.14.1.1.12 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 Servers Detailed Design Rev. 0 3-196 04/17/01

3.14.1.1.13 SharedResourceCheckTimerTask (Class)

This class is invoked periodically by a timer. When executed this class calls a method in the
SHAZAMFactoryImpl to have it check each shared resource and make sure if it has a
controlling op center that the controlling op center has at least one user logged in.

3.14.1.1.14 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.14.1.1.15 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.14.1.1.16 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the
CommandQueue. A flag is used to determine if the activation is being performed directly
on the device while it is in maintenance mode or if the activation is being processed as an
extension of setting a HAR message in response to a traffic event.

3.14.1.1.17 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.14.1.1.18 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and
SHAZAMFactory classes. This class provides a high level interface to allow for persistence
and depersistance of SHAZAM and SHAZAMFactory objects.

3.14.1.1.19 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon
initialization the module initializes a SHAZAMFactory which contains SHAZAM objects
that have been previously added to the system. These objects are accessed via the CORBA
ORB and manipulated directly from client applications. The module also creates support
objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their
processing, such as a database connection, event channels, and a periodic timer used to
allow the objects to perform timer based processing.

R1B2 Servers Detailed Design Rev. 0 3-197 04/17/01

3.14.1.1.20 SHAZAMControlModuleProperties (Class)

This class is used to access SHAZAMControlModule specific settings in the application
service’s properties file.

3.14.1.1.21 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the
CommandQueue. A flag is used to determine if the deactivation is being performed directly
on the device while it is in maintenance mode or if the deactivation is being processed as an
extension of setting a HAR message in response to a traffic event.

3.14.1.1.22 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.

3.14.1.1.23 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When
SHAZAMs are added, they are persisted to the database so this object can depersist them
upon startup. This class also provides a removeSHAZAM method that allows a SHAZAM
to remove itself from the system when directed.

3.14.1.1.24 SHAZAMImpl (Class)

This class implements the SHAZAM interface and allows for control of a SHAZAM field
device. The SHAZAMImpl makes use of the VikingRc2aSHAZAM object to perform field
communications to the device. All field communications are done asynchronously via the
command queue thread. The progress of an asynchronous command is provided to the
caller via a CommandStatus object.

3.14.1.1.25 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode
asynchronously via the CommandQueue. When executed this class calls back into the
SHAZAMImpl object to perform the “put in maintenance mode”

3.14.1.1.26 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online asynchronously via
the CommandQueue. When executed this class calls back into the SHAZAMImpl object to
perform the “put online” processing.

3.14.1.1.27 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing
asynchronously from the command queue.

R1B2 Servers Detailed Design Rev. 0 3-198 04/17/01

3.14.1.1.28 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to put set the SHAZAM configuration asynchronously
via the CommandQueue. When executed this class calls back into the SHAZAMImpl object
to perform the “set configuration” processing. The SHAZAM device model currently in use
does not contain any configuration settings, however this command is still processed
asynchronously for consistency.

3.14.1.1.29 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.14.1.1.30 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline asynchronously via
the CommandQueue. When executed this class calls back into the SHAZAMImpl object to
perform the “take offline” processing.

3.14.1.1.31 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.14.1.1.32 VikingRc2aSHAZAM (Class)

This class provides the device specific prototcol for controlling a SHAZAM device. This
class uses a TelephonyManager to acquire a telephony port for processing. It then uses the
telephony port to connect to the SHAZAM and send DTMF to activate or deactivate the
beacons via the Viking controller.

This class is responsible for intelligence in acquiring a port, such as seeking out an alternate
TelephonyManager when necessary.

R1B2 Servers Detailed Design Rev. 0 3-199 04/17/01

3.14.2 Sequence Diagrams

3.14.2.1 SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

A SHAZAM can be activated by a HAR when its message is set, or it can be activated
directly when in maintenance mode. In either case, the processing done is nearly identical.
When being activated by a HAR as part of the HAR message activation, the
activateHARNotice method from the HARMessageNotifier interface is called. When being
activated directly, the SHAZAM’s setBeaconsOn method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMActivateCmd object and
places it on its command queue for asynchronous processing. A flag in the
SHAZAMActivateCmd object specifies the activation was requested from maintenance
mode or online mode. When the queue executes the command, the activateImpl method
checks the flags in the command object to determine any processing that is specific to the
mode in which the activation request occurred. Common processing includes calling the
VikingRc2aSHAZAM object to perform communications and command the SHAZAM and
utilizing the caller’s command status object to inform the caller of the command’s progress.
Specific processing that requires checking the mode of the request includes checking that
the SHAZAM is in the same mode as when the command was queued, and updating the
TrafficEvent’s history if the activation occurred in online mode.

ORB
SHAZAMImpl CommandQueue

activateHARNotice
OR

setBeaconsOn
[improper rights]
AccessDenied

[activateHARNotice and not online
OR

setBeaconsOn and not in maint mode]
CHART2Exception

PushEventSupplier

create

Refer to FMS sequence diagram
for details.

CommandQueue
executes commands
asynchronously.

activate

[not maint mode command]
addLogEntry

[success]
updateStatus

[success]
push(SHAZAMStatusChanged)

completed

activateImpl is used
for processing invoked
via a HAR or when
activating a HAR in
maintenance mode.

addCommand

VikingRc2aSHAZAM

[not maint mode command and not online]
completed

activateImpl

SHAZAMActivateCmd

CommandStatus TrafficEvent SHAZAMControlDB

[maint mode command and not in maint mode]
completed

update

[improper rights]
completed

[activateHARNotice and not online
OR

setBeaconsOn and not in maint mode]
completed

execute

Figure 140. SHAZAMControlModule:activateSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-200 04/17/01

3.14.2.2 SHAZAMControlModule:createSHAZAM (Sequence Diagram)

A user with the proper functional rights can add a SHAZAM to the system. The SHAZAM
configuration data is added to the database, a SHAZAMImpl object is created, and the
object is connected to the POA, making it ready for calls from clients. The
ServiceApplication is called to register the object with the trader and an event is pushed to
allow GUIs to show this SHAZAM as an available object in the system. The SHAZAM is
added in the offline state and no field communications are necessary.

SHAZAM is created
in OFFLINE mode.

SHAZAMFactoryImpl
ORB

SHAZAMImpl

SHAZAMControlDB POA ServiceApplication PushEventSupplier

createSHAZAM

[improper rights]
AccessDenied

create

insertSHAZAM
[failure]

CHART2Exception

activate_object

registerObject

push(SHAZAMAdded)

Figure 141. SHAZAMControlModule:createSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-201 04/17/01

3.14.2.3 SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

A SHAZAM can be deactivated by a HAR when its message is set, or it can be deactivated
directly when in maintenance mode. In either case, the processing done is nearly identical.
When being deactivated by a HAR as part of the HAR message activation/blank processing,
the deactivateHARNotice method from the HARMessageNotifier interface is called. When
being deactivated directly, the SHAZAM’s setBeaconsOff method is called.

Regardless of the API called, the SHAZAM creates a SHAZAMDeactivateCmd object and
places it on its command queue for asynchronous processing. A flag in the
SHAZAMDeactivateCmd object specifies the deactivation was requested from maintenance
mode or online mode. When the queue executes the command, the deactivateImpl method
checks the flags in the command object to determine any processing that is specific to the
mode in which the deactivation request occurred. Common processing includes calling the
VikingRc2aSHAZAM object to perform communications and command the SHAZAM and
utilizing the caller’s command status object to inform the caller of the command’s progress.
Specific processing that requires checking the mode of the request includes checking that
the SHAZAM is in the same mode as when the command was queued, and updating the
TrafficEvent’s history if the deactivation occurred in online mode.

ORB
SHAZAMImpl CommandQueue

SHAZAMDectivateCmd

CommandStatus TrafficEvent SHAZAMControlDB PushEventSupplier

deactivateImpl is used
for processing invoked
via a HAR or when
deactivating a HAR in
maintenance mode.

VikingRc2aSHAZAM

Refer to FMS sequence diagram
for details.

CommandQueue
executes commands
asynchronously.

deactivateHARNotice
OR

setBeaconsOff
[improper rights]
AccessDenied

update

[deactivateHARNotice AND not online
OR

setBeaconsOff AND not maint mode]
completed

addCommand

execute

deactivateImpl

[maint mode command and not in maint mode]
completed

[not maint mode command and not online]
completed

deactivate

[TrafficEvent exists from prior activation]
addLogEntry

[success]
updateStatus

[success]
push(SHAZAMStatusChanged)

completed

[improper rights]
completed

[deactivateHARNotice AND not online
OR

setBeaconsOff AND not maint mode]
CHART2Exception

create

Figure 142. SHAZAMControlModule:deactivateSHAZAM (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-202 04/17/01

3.14.2.4 SHAZAMControlModule:initialize (Sequence Diagram)

When the SHAZAMControlModule is included in a ServiceApplication, the service
application calls the SHAZAMControlModule’s initialize method when the service is
started. The SHAZAMControlModule creates supporting objects such as the
SHAZAMControlModuleDB for database access and PushEventSupplier objects for
resource management events and SHAZAM control events. A SHAZAMFactoryImpl
object is created which depersists all SHAZAMs that have been previously added to the
system. Each SHAZAM is connected to the ORB and registered with the service
application to have the object published in the trader. A Timer is used to call the
SHAZAMFactory to perform timer based processing.

schedule

schedule

java.util.Timer

SharedResourceCheckTimerTask

RefreshSHAZAMTimerTask

create

initialize

getProperties

getDefaultProperties

create

create

registerEventChannel

create

The DBConnectionManager
is needed to create the
SHAZAMControlDB object.

PushEventSupplier

Event channels are needed
for SHAZAMControl events and
generic resource management
events.

SHAZAMFactoryImpl

SHAZAMImpl

POA

VikingRc2aSHAZAM

Service
Application

SHAZAMControlModule ServiceApplication

SHAZAMControlModuleProperties

PushEventSupplier

SHAZAMControlDB
getDBConnectionManager

activate_object

registerObject

activate_object

create

registerTraderTypes

create

registerEventChannel

create

registerObject

getSHAZAMObjects

[*for each SHAZAM in DB]

create

[*for each SHAZAM]

create

create

Figure 143. SHAZAMControlModule:initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-203 04/17/01

3.14.2.5 SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)

A user with proper functional rights can put a SHAZAM in maintenance mode if it is not
already in maintenance mode. A command object is created and placed on the command
queue to execute the command asynchronously. When executed, the command calls back
into the SHAZAMImpl object that calls the VikingRc2aSHAZAM object to command the
device to its inactive state. Regardless of the ability to command the device, the
SHAZAMImpl changes to the maintenance mode state, pesists its state in the database, and
pushes an event to allow the GUI to update its display for the SHAZAM.

ORB
SHAZAMImpl CommandQueue

CommandQueue
executes commands
asynchronously.

VikingRc2aSHAZAM

Refer to FMS
sequence diagram
for details.

TrafficEventCommandStatus SHAZAMControlDB PushEventSupplier

SHAZAMPutInMaintModeCmd

addCommand

updateStatus

[TrafficEvent exists from previous activation]
addLogEntry

putInMaintModeImpl

[already in maintenance mode]
completed

create

update

[improper rights]
completed

deactivate

execute

putInMaintenanceMode

[improper rights]
AccessDenied

[already in maintenance mode]
CHART2Exception

[already in maintenance mode]
completed

push(SHAZAMStatusChanged)

completed

[op ctr not equal caller's and no override]
completed[op ctr not equal caller's

and no override]
ResourceControlConflict

[op ctr not equal caller's and no override]
completed

Figure 144. SHAZAMControlModule:putInMaintenanceMode (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-204 04/17/01

3.14.2.6 SHAZAMControlModule:putOnline (Sequence Diagram)

A user with proper functional rights can put a SHAZAM online if it is not already online. A
command object is created and placed on the command queue to execute the command
asynchronously. When executed, the command calls back into the SHAZAMImpl object
that calls the VikingRc2aSHAZAM object to command the device to a known state (not
active). If able to deactivate the device, the SHAZAMImpl changes to the online state,
pesists its state in the database, and pushes an event to allow the GUI to update its display
for the SHAZAM.

[success]
updateStatus

SHAZAMPutOnlineCmd

CommandStatus SHAZAMControlDB PushEventSupplier

ORB

SHAZAMImpl CommandQueue

CommandQueue
executes commands
asynchronously.

VikingRc2aSHAZAM

putOnline

[improper rights]
AccessDenied

[improper rights]
completed

Refer to FMS
sequence diagram
for details.

[already online]
CHART2Exception

[already online]
completed

addCommand

[success]
push(SHAZAMStatusChanged)

completed

execute

putOnlineImpl

[already online]
completed

create

update

deactivate

Figure 145. SHAZAMControlModule:putOnline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-205 04/17/01

3.14.2.7 SHAZAMControlModule:remove (Sequence Diagram)

A user with the proper functional rights can remove an offline SHAZAM from the system.
The SHAZAM object is withdrawn from the trader and disconnected from the ORB. The
data for the SHAZAM is deleted from the database and a message is pushed to allow the
GUIs to remove the SHAZAM.

remove
[improper rights]
AccessDenied

removeSHAZAM

withdraw

deactivate_object

deleteSHAZAM

push(SHAZAMRemoved)

SHAZAMImpl SHAZAMFactoryImpl SHAZAMControlDB PushEventSupplierCosTrading.Register POA

[not offline]
CHART2Exception

ORB

Figure 146. SHAZAMControlModule:remove (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-206 04/17/01

3.14.2.8 SHAZAMControlModule:ResetSHAZAMtoLastKnownState (Sequence Diagram)

Because SHAZAMs do not issue any response to commands and these devices have been
found to be less than reliable in the past, a process is in place to periodically command the
device to its last known status. A Timer notifies the SHAZAMRefreshTimerTask when the
task’s scheduled interval expires. The task calls the SHAZAMFactoryImpl which calls each
SHAZAM to have them do a refresh if necessary. Each SHAZAM determines if a refresh is
necessary based on its refresh interval. Refreshes are only done when the SHAZAM is in an
online state. If the SHAZAM determines a refresh is warranted it adds a refresh commandto
its command queue to be executed asynchronously. When the command is executed, it
makes sure the refresh is still necessary and the appropriate command (activate or
deactivate) is sent to the device via the VikingRc2aSHAZAM class. A low priority is given
to the command in terms of communications resource usage. (Refer to the FMS detailed
design for more information on communications resources and priorities)

[device commanded within
the threshold]

[not online]

[device commanded
within the threshold]

[status is active]
activate

[status is inactive]
deactivate

java.util.Timer

SHAZAMImpl

VikingRc2aSHAZAMCommandQueue

SHAZAMRefreshCmd

[not online]

create

addCommand

execute

refreshImpl

RefreshSHAZAMTimerTask SHAZAMFactoryImpl

CommandQueue
executes commands
asynchronously.

run

doRefreshSHAZAMSCheck

[*for each SHAZAM]

Figure 147. SHAZAMControlModule:ResetSHAZAMtoLastKnownState

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-207 04/17/01

3.14.2.9 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM if it is in
maintenance mode. The Rc2aSHAZAM itself does not have any configurable settings, so
no field communications are necessary. The configuration is stored in memory and
persisted to the database and an event is pushed to notify others of the changes. Note that
although this command does not currently require field communications, the asynchronous
command pattern is used for consistency with other device commands and also to allow the
code to easily adapt to a device type that supports configurable settings.

update

addCommand

execute

setConfigurationImpl

update

updateConfiguration

push(SHAZAMConfigurationChanged)

ORB
SHAZAMImpl CommandQueue SHAZAMControlDB PushEventSupplierCommandStatus

SHAZAMSetConfigurationCmd

setConfiguration

[improper rights]
AccessDenied

[not in maint mode]
CHART2Exception

completed

[improper rights]
completed

[not in maint mode]
completed

create

Figure 148. SHAZAMControlModule:setConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-208 04/17/01

3.14.2.10 SHAZAMControlModule:shutdown (Sequence Diagram)

When a service application containing the SHAZAMControlModule is shutdown, it calls
the shutdown method. The SHAZAMControlModule cleans up its resources, which include
its periodic timer and PushEventConsumers.

ServiceApplication

SHAZAMControlModule java.util.Timer SHAZAMFactoryImpl java.lang.Vector POAServiceApplication
PushEventSupplier
(SHAZAMControl)

PushEventSupplier
(Resource Management)

disconnectPushConsumer

disconnectPushConsumer

shutdown

cancel

shutdown

deactivate_object

remove
[*for each SHAZAM]

deactivate_object

Figure 149. SHAZAMControlModule:shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-209 04/17/01

3.14.2.11 SHAZAMControlModule:takeOffline (Sequence Diagram)

A user with proper functional rights can take a SHAZAM offline if it is not already offline.
A command object is created and placed on the command queue to execute the command
asynchronously. When executed, the command calls back into the SHAZAMImpl object
that calls the VikingRc2aSHAZAM object to command the device to its inactive state.
Regardless of the ability to command the device, the SHAZAMImpl changes to the offline
state, pesists its state in the database, and pushes an event to allow the GUI to update its
display for the SHAZAM.

[TrafficEvent exists from previous activation]
addLogEntry

[op ctr not equal caller's and no override]
completed

[op ctr not equal caller's
and no override]

ResourceControlConflict

[op ctr not equal caller's and no override]
completed

SHAZAMTakeOfflineCmd

CommandStatus SHAZAMControlDB PushEventSupplier

takeOffline

[improper rights]
AccessDenied

[already offline]
CHART2Exception

[already offline]
completed

addCommand

updateStatus

push(SHAZAMStatusChanged)

completed

execute

takeOfflineImpl
[already offline]

completed

create

update

[improper rights]
completed

deactivate

TrafficEvent
ORB

SHAZAMImpl CommandQueue

CommandQueue
executes commands
asynchronously.

VikingRc2aSHAZAM

Refer to FMS
sequence diagram
for details.

Figure 150. SHAZAMControlModule:takeOffline (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-210 04/17/01

3.15 SHAZAMUtility

3.15.1 Classes

3.15.1.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the
GUI.

SHAZAMStatus SHAZAMConfiguration

SHAZAMStatusImpl SHAZAMConfigurationImpl

factory createSHAZAMStatus():SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

factory createSHAZAMConfiguration():SHAZAMConfiguration

string m_name;
string m_location
string m_phoneNumber
Direction m_direction
HAR m_har
long m_refreshIntervalMins

Figure 151. SHAZAMUtility (Class Diagram)

3.15.1.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.15.1.1.2 SHAZAMConfigurationImpl (Class)

This class provides an implementation of the SHAZAMConfiguration valuetype as defined
in the IDL. This class provides access to values relating to the configuration of a
SHAZAM.

3.15.1.1.3 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.15.1.1.4 SHAZAMStatusImpl (Class)

This class implements the SHAZAMStatus valuetype as defined in the IDL. It provides
access to values relating to the current status of a SHAZAM.

R1B2 Servers Detailed Design Rev. 0 3-211 04/17/01

3.16 SystemInterfaces
This section shows interfaces to the system that are defined in IDL.

3.16.1 Classes

3.16.1.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.

*1

1

1

AudioPushConsumer

TTSPriority

AudioDataFormat

AudioEncoding

UnsupportedAudioFormat AudioClipNotFound

TTSConverter

UniquelyIdentifiable

AudioData
1 *

AudioClipStreamer

*

1

*

1

*

1

TextEmbeddedTag

replaces

*

1

*

1

1

1

pushAudio(AudioData data):void
pushAudioProperties(AudioDataFormat format,
 long seconds,
 long size):void
pushFailure(string errMsg):void

USER
SYSTEM

AudioEncoding m_encoding;
float m_sampleRate;
long m_sampleSizeInBits;
long m_channels;
long m_frameSize;
float m_frameRate;
boolean m_bigEndian;

PCM_SIGNED
PCM_UNSIGNED
A_LAW
U_LAW

AudioDataFormatList supportedFormats; string reason;

getSupportedFormats(void):AudioDataFormatList;
convertTextToSpeech(string text,
 AudioDataFormat format,
 long maxChunkSize,
 TTSPriority priority,
 AudioPushConsumer consumer)
getVoiceLength(string text,
 AudioDataFormat format,
 AudioPushConsumer consumer)

getID()
getName()

streamAudioClip(Identifier id,
 long maxChunkSize,
 AudioPushConsumer consumer):void

string MorningAfternoonEvening

Figure 152. AudioCommon (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-212 04/17/01

3.16.1.1.1 AudioClipNotFound (Class)

This exception is thrown by an AudioClipStreamer if asked to push an audio clip which it
cannot find.

3.16.1.1.2 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface.

3.16.1.1.3 AudioData (Class)

This typedef is a sequence of bytes that contain audio data. This data is used in conjunction
with AudioDataFormat to decode the data into voice.

3.16.1.1.4 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.16.1.1.5 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.16.1.1.6 AudioPushConsumer (Class)

This interface is implemented by objects that may need to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.16.1.1.7 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the
TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the
text to speech. The MorningAfternoonEvening tag is replaced with the text ‘morning’ when
the conversion takes place between 00:00 and 11:59, ‘afternoon’ from 12:00 through 16:59,
and ‘evening’ from 17:00 to 23:59.

3.16.1.1.8 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.16.1.1.9 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to
convert text to speech.

R1B2 Servers Detailed Design Rev. 0 3-213 04/17/01

3.16.1.1.10 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.1.11 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that
does not support the given format.

R1B2 Servers Detailed Design Rev. 0 3-214 04/17/01

3.16.1.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to
enable creating, pushing, viewing, and searching Communications Log entries.

CommLogEventType LogEntryList

*

1

LogEntryDataList

*1

LogEntryData

CommLogLogFilter LogEntry

LogIterator

*11 1

*

1

LogEntryAdded sequence LogEntry
sequence LogEntryData

getEntries(AccessToken token, LogFilter filter,
 long maxCount, LogEntryList entries) : LogIterator
addEntries(AccessToken token, LogEntryDataList logEntries) : void

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier eventID
string m_opCenterName
string m_containsText

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

getMoreEntries(long maxCount) : LogEntryList
destroy():void

long timeOfLastUse String entryText
Identifier trafficEventID

Figure 153. CommLogManagement (Class Diagram)

3.16.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART II system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.16.1.2.2 CommLogEventType (Class)

This enumeration lists the possible events that the CommsLog service may push via the
CORBA event service. At present, only one event is defined, the addition of a new
LogEntry to the database.

3.16.1.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 Servers Detailed Design Rev. 0 3-215 04/17/01

3.16.1.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.16.1.2.5 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataList will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

3.16.1.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a LogIterator from which additional LogEntryList sequences can
be requested, in order to complete the entire query.

3.16.1.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.16.1.2.8 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 Servers Detailed Design Rev. 0 3-216 04/17/01

3.16.1.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

NetworkConnectionSite

Direction

Password

UserName

TimeStamp

SpecifiedObjectNotFound

InvalidStateUnsupportedOperation

CommandStatus

UniquelyIdentifiable GeoLocatable

Service

CHART2Exception

AccessDenied

NORTH
SOUTH
EAST
WEST
INNER_LOOP
OUTER_LOOP

string reason

string reasonstring reason

getID()
getName()

String getLocationDesc()

string reason
string debug

string reason
string requiredRights

ping():void
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

update(String status):void
completed(String final_status)

Figure 154. Common (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-217 04/17/01

3.16.1.3.1 AccessDenied (Class)

This class represents an access denied, or “no rights” failure.

3.16.1.3.2 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very
generic exceptions that require no special processing by the client. It supports a reason
string that may be shown to any user and a debug string that will contain detailed
information useful in determining the cause of the problem.

3.16.1.3.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.16.1.3.4 Direction (Class)

This enumeration defines direction of travel.

3.16.1.3.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.3.6 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid
state to perform the operation.

3.16.1.3.7 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the CHART2DMSStatus.

3.16.1.3.8 Password (Class)

Typedef used to define the type of a Password.

R1B2 Servers Detailed Design Rev. 0 3-218 04/17/01

3.16.1.3.9 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.16.1.3.10 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object
that cannot be found by the invoked object.

3.16.1.3.11 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

3.16.1.3.12 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.3.13 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which
it is called.

3.16.1.3.14 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

R1B2 Servers Detailed Design Rev. 0 3-219 04/17/01

3.16.1.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

ArbQueueEntry

Message

ArbitrationQueue

*1

OperationalStatusCommunicationMode

CommFailure DisapprovedMessageContent

CommEnabled

string reason;
string debug;
long errorCode;

WordList disapprovedWords
string reason

validateMessageContent():void;

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] trafficEventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,
 TrafficEvent trafficEvent,
 Identifier opCenterID,
 string opCenterName):void;

OK
COMM_FAILURE
HARDWARE_FAILURE

ONLINE
OFFLINE
MAINT_MODE

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent():TrafficEvent
getTrafficEventID():byte[]
abstract setActive(String deviceName, String msg):void
abstract setInactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

TrafficEvent m_trafficEvent
byte[] m_trafficEventID
Message m_message
boolean m_inProgress
boolean m_active
boolean m_deleted
boolean m_updated

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

Figure 155. DeviceManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-220 04/17/01

3.16.1.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities. While the queue is interrupted, it allows direct commands to be passed to the
device for maintenance activies. This feature is built in to allow the device to take
advantage of the arbitration queue’s asynchronous processing capabilities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue simply blanks the device
when the queue processing is resumed.

3.16.1.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.4.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.4.4 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating
with a device.

R1B2 Servers Detailed Design Rev. 0 3-221 04/17/01

3.16.1.4.5 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.16.1.4.6 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are
not approved. This exception is also thrown if an attempt is made to put the device in an
invalid display state, such as putting the Beacons ON for a blank DMS.

3.16.1.4.7 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.4.8 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

R1B2 Servers Detailed Design Rev. 0 3-222 04/17/01

3.16.1.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.

SuggestionList

DictionaryEventType

1..*

1

DictionaryEventInfo

UniquelyIdentifiable

*

*

DictionaryWordTypeWordList

*

1

DictionaryWord

DictionarySuggestion

1

1

Dictionary

1

1

getWord():string;
getWordType():long;
factory create(string word, long bitmask):DictionaryWord

string m_word
long m_wordTypeBitmask

getMisspelledWord():DictionaryWord
getReplacements():WordList
factory create(DictionaryWord word,
 WordList replacements):DictionarySuggestion

DictionaryWord m_misspelledWord
WordList m_replacements

BannedWordsAdded
BannedWordsRemoved
ApprovedWordsAdded
ApprovedWordsRemoved

Identifier dictionaryID
WordList listOfWords

getID()
getName()

DMS_WORD
HAR_WORD

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList

Figure 156. DictionaryManagement (Class Diagram)

3.16.1.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of
messaging devices are DMS, HAR etc.

R1B2 Servers Detailed Design Rev. 0 3-223 04/17/01

3.16.1.5.2 DictionaryEventInfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It
contains information identifying the dictionary, and the list of words affected by the event.

3.16.1.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to
the dictionary module.

3.16.1.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.16.1.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.16.1.5.6 DictionaryWordType (Class)

This enumeration is used to tag words that are placed in a dictionary. Words may apply to a
specific messaging device or many.

3.16.1.5.7 SuggestionList (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.16.1.5.8 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord.

R1B2 Servers Detailed Design Rev. 0 3-224 04/17/01

3.16.1.6 DMSControl (Class Diagram)

DMSEventType is
DMSAdded or

DMSConfigChanged

DMSEventType is
CurrentDMSStatus

FP9500Configuration

DMSArbQueueEntry

ArbQueueEntry

HARNotifierArbQueueEntry

*

1

DMSRPIData

ResponsePlanItemData

1

*

1

1

1

1

1 1

11

SignTypeBeaconType

DMSEvent

UniquelyIdentifiable GeoLocatableCommEnabled

DMSStatus

* 1

1

1

NetworkConnectionSite

DMSTestType

FP9500Status

FP9500DMS

1 1

1 1

11

*

1

*

DMSEventType is
DMSAdded or

DMSConfigChanged

1

1

SharedResource

HARMessageNotifier

DMSEventType is
CurrentDMSStatus

1

1

11

*

DMSList

ArbitrationQueue

1

1

Message

1

1

DMSPlanItemData

PlanItemData

OperationalStatus

SignTypeValuesBeaconTypeValues

DMSConfigurationEventInfo

1

*
1

1

Chart2DMS

1

1

CommunicationMode

SharedResourceManager

Chart2DMSFactory
Chart2DMSStatus

Chart2DMSConfiguration

111

1

1

*

** *

1

1

FontMetrics

SignMetrics

DMSConfiguration

DMSStatusEventInfo

1

MULTIString

ShortErrorStatus

DMSEventType

DMSMessage

1

1

MULTIParseFailure

DMS

DMSFactory

OK
COMM_FAILURE
HARDWARE_FAILURE

ONLINE
OFFLINE
MAINT_MODE

ResponsePlanItem m_responsePlanItem

getDMSID() : Identifier
setDMS(DMS) : void
getMessageID Identifier
setMessage (StoredMessage) : void

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMessage
Identifier m_storedMsgID

DMSEventType <discriminator>
 Identifier dmsID - forDMSDeleted
 or
 DMSConfigurationEventInfo dmsConfigInfo
 or
 DMSStatusEventInfo statusInfo

getArbitrationQueue() : ArbitrationQueue
performTesting(AccessToken, DMSTestType, long iterations, CommandStatus status) : void

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, Chart2HAR):void
getAssociatedHAR() : Chart2HAR
getDirection():Direction
setDirection(Direction):void

DMSAdded
DMSDeleted
CurrentDMSStatus
DMSConfigChanged

factory createChart2DMSStatus() : Chart2DMSStatus

Identifier m_controllingOpCenterID
string m_controllingOpCenterName
NetworkConnectionSite m_NetworkConnectionSite

factory createChart2DMSConfiguration() : Chart2DMSConfiguration

long m_fmsDeviceID
Identifier m_owningOrgID
string m_agentHostName
string m_SNMPCommunityName
long m_pollInterval
long m_pollCycleDuration
string m_devicePhoneNumber
string m_deviceCommString
DeviceModelID m_deviceModelID
long m_deviceDropAddress
long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

other = 1
bos = 2
cms = 3
vmsChar = =4
etc.

other = 1
none = 2
oneBeacon = 3
twoBeaconSyncFlash = 4
etc.

DMS theDMS
Identifier dmsID
DMSConfiguration config

short fontHeight
short characterWidth

long vmsSignHeightPixels
long vmsSignWidthPixels
short vmsCharacterHeightPixels
short vmsCharacterWidthPixels

factory createDMSConfiguration() :
 DMSConfiguration

string m_name
string m_deviceLocation
SignType m_dmsSignType
SignMetrics m_signMetrics
FontMetrics m_fontMetrics
long m_pages
long m_dmsTimeCommLoss
BeaconType m_dmsBeaconType
long m_defaultJustificationLine
long m_defaultPageOnTime
long m_defaultPageOffTime

Identifier dmsID
DMSStatus status

getBeaconState() : octet
getMultiString() : MULTIString
getMinimumCharacters() : long
factory createDMSMessage(MULTIString multiStringMessage,
 octet beaconState) : DMSMessage

octet m_dmsMessageBeacon
MULTIString m_dmsMessageMultiString

sequence DMSList

blankSign(AccessToken token, CommandStatus status) : void
getConfiguration(AccessToken token) : DMSConfiguration
getStatus() : DMSStatus
isBlank() : boolean
pollNow(AccessToken token, CommandStatus status) : void
putDMSInMaintMode(AccessToken, CommandStatus status) : void
putDMSOnline(AccessToken token, CommandStatus status) : void
remove(AccessToken token) : void
resetController(AccessToken token, CommandStatus status) : void
setConfiguration(AccessToken token, DMSConfiguration config,CommandStatus status) : void
setMessage(AccessToken token, DMSMessage message, CommandStatus status) : void
takeOffline(AccessToken token, CommandStatus status) : void

createDMS(AccessToken token, DMSConfiguration config) : DMS
getDMSList() : DMSList

string reason

CommandStatus m_cmdStatus

factory createDMSStatus() : DMSStatus

DMSMessage m_currentMessage
boolean m_beaconState
CommunicationsMode m_commMode
OperationalStatus m_opStatus
ShortErrorStatus m_shortErrorStatus
long m_statusChangeTime

DMSRandom
DMSPermutation

factory createFP9500Status() : FP9500Status

octet m_currentMsgNum
octet m_currentMsgSource

performPixelTest(AccessToken token, CommandStatus status) : void

getDMS() : Chart2DMS
getMessage() : DMSMessage
setDMS(Chart2DMS) : void
setMessage(DMSMessage) : void
factory create DMSRPIData() :
 DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

Figure 157. DMSControl (Class Diagram)

3.16.1.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

R1B2 Servers Detailed Design Rev. 0 3-225 04/17/01

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities. While the queue is interrupted, it allows direct commands to be passed to the
device for maintenance activies. This feature is built in to allow the device to take
advantage of the arbitration queue’s asynchronous processing capabilities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue simply blanks the device
when the queue processing is resumed.

3.16.1.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the
BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.16.1.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices
(number of beacons and whether and in what manner they flash).

3.16.1.6.5 CHART2DMS (Class)

The CHART2DMS class extends the DMS interface and defines a more detailed interface
to be used in manipulating the CHART II-specific DMS objects within CHART II. It
provides a method for getting the DMSArbitrationQueue for a CHART II DMS, which can
then be used by traffic events to provide input as to what each traffic event desires to be on
the sign. It also provides a method to perform testing on a sign. This method can be
extended by derived classes for specific models of signs, which know how to perform
certain types of testing on their specific model of sign. CHART II business rules include
concepts such as shared resrouces, arbitration queues, and linking devices usage to traffic
events, concepts which go beyond what would be industry-standard DMS control.

3.16.1.6.6 CHART2DMSConfiguration (Class)

The CHART2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to CHART II
processing. Such information includes how to contact the sign under CHART II software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

R1B2 Servers Detailed Design Rev. 0 3-226 04/17/01

3.16.1.6.7 CHART2DMSFactory (Class)

The CHART2DMSFactory class extends the DMSFactory interface to provide additional
CHART II specific capability. This factory creates CHART2DMS objects (extensions of
DMS objects). It implements SharedResourceManager capbility control DMS objects as
shared resources.

3.16.1.6.8 CHART2DMSStatus (Class)

The CHART2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to CHART II processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.16.1.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.6.10 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.16.1.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within CHART II. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, CHART2DMS, which defines interactions with signs under CHART II business
rules.)

3.16.1.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used
for most standard entries placed on the arbitration queue. When its setActive, setInactive,
and setFailed methods are called, it adds a log entry to its traffic event and calls the
appropriate method on its response plan item (setActive, setInactive, or update).

R1B2 Servers Detailed Design Rev. 0 3-227 04/17/01

3.16.1.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class that describes the configuration of a DMS
device. This configuration information is normally fairly static: things like the size of the
sign in characters and pixels, its name and location, and how to contact the sign (as opposed
to dynamic information like the current message on the sign, which is defined in an
analogous Status object).

3.16.1.6.14 DMSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType
DMSConfigChanged. It contains a DMSConfiguration object that details the new
configuration for a CHART II DMS object.

3.16.1.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS
operations which can be pushed on an Event Channel to update event consumers on DMS-
related activities. The four types of events, defined by the enumeration DMSEventType,
are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

3.16.1.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to
DMS operations which can be pushed on an Event Channel to update event consumers on
DMS-related activities. The four types of events are: DMSAdded, DMSDeleted,
CurrentDMSStatus, and DMSConfigChanged.

3.16.1.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
CHART II system. It also provides a method to get a list of DMS devices currently in the
system.

3.16.1.6.18 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory
and other classes for maintaining the list or other lists of DMS objects.

3.16.1.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and so within a
DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

R1B2 Servers Detailed Design Rev. 0 3-228 04/17/01

3.16.1.6.20 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanItemData.

3.16.1.6.21 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.16.1.6.22 DMSStatus (Class)

The DMSStatus class is an abstract value-type class that provides status information for a
DMS. This status information is relatively dynamic: things like the current message on the
sign, its beacon state, its current operational mode (online, offline, maintenance mode), and
current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More
static information about the sign, such as its size and location, is defined in an analogous
Configuration object.)

3.16.1.6.23 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType
CurrentDMSStatus. It contains a DMSStatus object that details the new status for a CHART
II DMS object.

3.16.1.6.24 DMSTestType (Class)

The DMSTestType enumeration identifies two types of tests which can be performed on
DMS devices: random and permutation.

3.16.1.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information
regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.16.1.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
CHART2DMSConfiguration class to provide configuration information specific to an
FP9500 model of DMS. It is exemplary of potentially a whole suite of subclasses specific to
a specific brand and model of sign for manufacturer-specific configuration information.

R1B2 Servers Detailed Design Rev. 0 3-229 04/17/01

3.16.1.6.27 FP9500DMS (Class)

The FP9500DMS class extends the CHART2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest
method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.16.1.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the CHART2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model includes the current message number and current message
source.

3.16.1.6.29 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.6.31 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry
used for entries that are placed on the arbitration queue to put a “SHAZAM” message on a
DMS. These types of messages have a low priority and are not allowed to overwrite any
standard message (from a DMSArbQueueEntry) that is currently displayed on a device.
These types of messages are also different in that they are not added to the queue directly
by a response plan item and are instead included as a sub-task of activating a message on a
HAR. The HAR uses a command status object to track the progress of the HAR notifier
message.

R1B2 Servers Detailed Design Rev. 0 3-230 04/17/01

3.16.1.6.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.6.33 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS
message cannot be correctly parsed.

3.16.1.6.34 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class
contains a MULTIString value to specify the content of the sign, in addition to the beacon
state value.

3.16.1.6.35 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the CHART2DMSStatus.

3.16.1.6.36 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

3.16.1.6.37 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.16.1.6.38 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.16.1.6.39 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 Servers Detailed Design Rev. 0 3-231 04/17/01

3.16.1.6.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.6.41 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined
by the NTCIP center to field standard for DMS that specifies error conditions that may be
present on the device. This class is used to encapsulate the bit mask and provide a user-
friendly interface to the error conditions. The DMSStatus class contains a value of this type.

3.16.1.6.42 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information
regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration
object.

3.16.1.6.43 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the
SignTypeValues class. It is a part of a DMSConfiguration object.

3.16.1.6.44 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are
bos, cms, vmsChar, etc.

3.16.1.6.45 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-232 04/17/01

3.16.1.7 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A
plan is a group of actions that are set-up in advance to be used in response to a traffic event.
Given the unpredictable nature of traffic events, pre-defined plans are usually only useful
for congestion, safety messages, and weather-related messages.

PlanItemList

PlanList PlanItemData

PlanEventType

1

1

*1 *1

PlanItemChangedEventInfo

UniquelyIdentifiable

1..*

1

1..*

1

PlanNameChangeEventInfoPlanAddedEventInfo

PlanItemAddedEventInfo PlanItemRemovedEventInfo

PlanFactory Plan

PlanItem

isUsingObject(IdentifierList objectIDs):boolean

PlanAdded
PlanRemoved
PlanItemAdded
PlanItemRemoved
PlanNameChanged
PlanItemChanged

PlanItem thePlanItem;
PlanItemData itemData;
string itemName;
Identifier planID;
Identifier planItemID;

getID()
getName()

Identifier planID
string newName

Plan thePlan
Identifier planID

Identifier planID
Identifier planItemID

PlanItem planItem
Identifier planID
Identifier planItemID

createPlan(AccessToken token,
 string name):Plan
getPlans():PlanList

setName(AccessToken,string):void
addItem(AccessToken,PlanItemData):PlanItem
removeItem(AccessToken,PlanItem):void
getItems():PlanItemList
remove(AccessToken):void
isUsingObject(IdentifierList objectIDs)

setName(AccessToken, string):void
setData(AccessToken, PlanItemData):void
getData():PlanItemData
remove(AccessToken):void
getPlanID():Identifier
isUsingObject(IdentifierList):boolean

Figure 158. PlanManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-233 04/17/01

3.16.1.7.1 Plan (Class)

A Plan is a group of actions listed out in advance to be used in response to a traffic event.
Each action is defined to be a Plan item. The Plan supports functionality to add and remove
plan items.

3.16.1.7.2 PlanAddedEventInfo (Class)

The PlanAddedEventInfo class defines the data passed in the PlanAdded event.

3.16.1.7.3 PlanEventType (Class)

The PlanEventType class is an enumeration that describes the types of events that can be
pushed for plans. When a plan item is added or modified it is up to the derived item type to
push the appropriate type of event.

3.16.1.7.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.16.1.7.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.16.1.7.6 PlanItemAddedEventInfo (Class)

The PlanItemAddededEventInfo class defines the data passed in the PlanItemAdded event.

3.16.1.7.7 PlanItemChangedEventInfo (Class)

The PlanItemChangedEventInfo class defines the data passed in the PlanItemChanged
event.

3.16.1.7.8 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.16.1.7.9 PlanItemList (Class)

The PlanItemList class is simply a collection of PlanItem objects.

3.16.1.7.10 PlanItemRemovedEventInfo (Class)

The PlanItemRemovedEventInfo defines the data passed in the PlanItemRemoved event.

R1B2 Servers Detailed Design Rev. 0 3-234 04/17/01

3.16.1.7.11 PlanList (Class)

The PlanList class is simply a collection of Plan objects.

3.16.1.7.12 PlanNameChangeEventInfo (Class)

The PlanNameChangeEventInfo class defines the data passed in the PlanNameChanged
event.

3.16.1.7.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-235 04/17/01

3.16.1.8 HARControl (Class Diagram)

This class diagram contains the interfaces relating to the control of Highway Advisory
Radio (HAR).

1

HARSlotUsageIndicator

HARMessageClipList

*

*

1

ArbitrationQueue
HARList1

1

1..*

*

HARSlotNumber HARSlotData

Chart2HARConfiguration

Chart2HARStatus

11

11

HARConfiguration

HARStatus

11

1

1

Message

Chart2HARFactory

HARRPIData

HARMessage

1

*

11

1..*1

0..11

*1

HARMessageTextClip
HARMessageAudioClip

HARMessagePrestoredClip

HARMessage

HARPlanItemData
StoredMessage

1 *

1

*

HARArbQueueEntry

ArbQueueEntry

*

1

HAR

HARMessageNotifier

HARFactory

HARMessageAudioDataClip

1

SharedResource

Chart2HAR

UniquelyIdentifiable CommEnabled GeoLocatable

HARSlotDataList

HAREventType

1..* 1

HARConfigurationEventInfo HARStatusChangedEventInfo

HARMessageClip*

SharedResourceManager

DefaultHeader
DefaultTrailer
DefaultMessage
ImmediateMessage
User

ResponsePlanItem m_responsePlanItem
HARMsgNotifierIDList m_notifiersToActivate

factory createAudioDataClip(in AudioDataFormat format,
 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat
AudioData m_audioData

getSlotNumber():HARSlotNumber
setSlotNumber(HARSlotNumber):void
factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber slotNumber

HARAdded
HARRemoved
HARStatusChanged
HARConfigurationChanged

HAR theHAR
Identifier id
HARConfiguration config

Identifier id
HARStatus status

getDescription():string
setDescription(string):void
getVoiceSeconds():long
setVoiceSeconds(long voiceSeconds):void

string m_description
long m_voiceSeconds

HARSlotNumber slotNumber
HARMessageClip slotMessageClip
HARSlotUsageIndicator slotUsageIndicator

Chart2HAR m_har
HARMessage m_message
HARMsgNotifierIDList m_msgNotifiersToActivate

getArbitrationQueue():ArbitrationQueue

factory createChart2HARConfiguration():
 Chart2HARConfiguration

HARMsgNotifierIDList m_msgNotifiersfactory createChart2HARStatus():Chart2HARStatus

Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

factory createHARConfiguration():HARConfiguration

string m_name
string m_deviceLocation
string m_devicePhoneNumber
string m_deviceMonitorPhoneNumber
HARMessage m_defaultMessage
HARMessageClip m_defaultHeader
HARMessageClip m_defaultTrailer
long m_interMessageSpacingSecs
long m_maxStoredVoiceSeconds

factory createHARStatus():HARStatus

HARMessage m_currentMessage
HARSlotDataList m_slotData
boolean m_transmitterOn
CommMode m_commMode

HARMessageClip m_header
HARMessageClipList m_body
HARMessageClip m_trailer
boolean m_useDefaultHeader
boolean m_useDefaultTrailer

getMessageText():string
setMessageText(string):void
stream(in long maxChunkSize,
 in AudioDataFormat format,
 in AudioPushConsumer consumer):void
factory createTextClip(string text):HARMessageTextClip

string m_messageText

stream(in long maxChunkSize,
 in AudioPushConsumer consumer:void
factory createAudioClip(Identifier,
 AudioStreamer):HARMessageAudioClip

Identifier m_audioClipID
AudioClipStreamer m_streamer

factory createHARPlanItemData():
 HARPlanItemData

HAR m_har
Identifier m_harID
StoredMessage m_storedMsg
Identifier m_storedMsgID
Direction m_direction

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void
getConfiguration() : HARConfiguration
getStatus():HARStatus
setMessage(AccessToken, HARMessage, CommandStatus):void
blank(AccessToken, CommandStatus):void
storeSlotMessage(AccessToken, HARSlotNumber, HARMessageClip,
 CommandStatus):void
deleteSlotMessage(AccessToken, HARSlotNumber,
 CommandStatus):void
isBlank():boolean
reset(AccessToken, CommandStatus):void
setup(AccessToken, CommandStatus):void
setTransmitterOff(AccessToken, CommandStatus):void
setTransmitterOn(AccessToken, CommandStatus):void
remove(AccessToken, CommandStatus):void

createHAR(AccessToken,
 HARConfiguration) : HAR
getHARs():HARList

string

Figure 159. HARControl (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-236 04/17/01

3.16.1.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center—the
one responsible for the existing message—or the user has a special functional right that
allows this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
queue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.16.1.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.16.1.8.3 CHART2HAR (Class)

The CHART2HAR class is an extension of the HAR that is aware of CHART2 business
rules, such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.16.1.8.4 CHART2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART II specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

R1B2 Servers Detailed Design Rev. 0 3-237 04/17/01

3.16.1.8.5 CHART2HARFactory (Class)

This interface defines objects capable of creating CHART2HAR objects. This factory is
also responsible for monitoring the HARs as shared resources and must report when a HAR
that is currently broadcasting a message (other than the default) does not have a user logged
into the system that is from the controlling operations center.

3.16.1.8.6 CHART2HARStatus (Class)

This class contains status information for a CHART2HAR object. This information is
specific to CHART II processing and extends beyond the status related to typical HAR
device control.

3.16.1.8.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.8.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.8.9 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

3.16.1.8.10 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a
traffic event. This entry also specifies the HARMessageNotifiers to be activated when the
message is activated.

3.16.1.8.11 HARConfiguration (Class)

This class contains configuration data for a HAR device.

R1B2 Servers Detailed Design Rev. 0 3-238 04/17/01

3.16.1.8.12 HARConfigurationEventInfo (Class)

This class defines data pushed with a HARConfigurationChanged and HARAdded CORBA
event.

3.16.1.8.13 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl
event channel.

3.16.1.8.14 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system.

3.16.1.8.15 HARList (Class)

The HARList class is simply a collection of HAR objects.

3.16.1.8.16 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.16.1.8.17 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

3.16.1.8.18 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.16.1.8.19 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.16.1.8.20 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects.

R1B2 Servers Detailed Design Rev. 0 3-239 04/17/01

3.16.1.8.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.8.22 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.16.1.8.23 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.16.1.8.24 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.16.1.8.25 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.16.1.8.26 HARSlotData (Class)

This struct defines the data used to identify the contents of a slot in the HAR controller.

3.16.1.8.27 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects.

3.16.1.8.28 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

3.16.1.8.29 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

R1B2 Servers Detailed Design Rev. 0 3-240 04/17/01

3.16.1.8.30 HARStatus (Class)

This class contains data that indicates the current status of a HAR device.

3.16.1.8.31 HARStatusChangedEventInfo (Class)

This class contains data that is pushed when the HARStatusChanged CORBA event is
pushed on the HARControl event channel.

3.16.1.8.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.8.33 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.8.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.8.35 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description, which are used to allow the user to
organize messages.

3.16.1.8.36 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-241 04/17/01

3.16.1.9 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,
user login sessions, and organizations.

ResponseParticipant

*

1

1

UniquelyIdentifiable

ResourceEventType

ControllingOpCtrChangeEventInfo

LoginSessionList

SharedResourceList

1..* *

1..*

*

UnhandledControlledResourcesInfo

1

ResponseParticipantType

UserLoginSession

*

1

OperationsCenter SharedResource SharedResourceManager

TransferrableSharedResource

Organization

HasControlledResources ResourceControlConflict

LoginFailure LogoutFailure InvalidOperationsCenter

11

TYPE_ORGANIZATION
TYPE_UNIT
TYPE_RESOURCE
TYPE_SPECIAL_NEEDS

string m_name
ResponseParticipantType m_type

getID()
getName()

ControllingOpCtrChanged
UnhandledControlledResourcesEvent

Identifier resourceID
string opCtrName
Identifier opCtrID

Identifier opCtrID
string opCtrName

string reason
string controllingOpCenterName

string reason string reason string reason

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean
void forceLogout(AccessToken token)

loginUser(UserLoginSession loginSession,
 UserName name,
 string password,
 string hostname):AccessToken
logoutUser(AccessToken token,
 UserLoginSession loginSession):void
changeUser(AccessToken token,
 UserLoginSession oldSession,
 UserLoginSession newSession,
 UserName userName,
 string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions():LoginSessionList
forceLogout(AccessToken token,
 UserLoginSession loginSession):void
isUserLoggedIn(UserName userName):boolean
getNumLoggedInUsers():long
transferSharedResources(AccessToken token,
 SharedResourceList resources,
 OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
 string password):boolean
addResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
removeResponseParticipant(AccessToken token,
 ResponseParticipant participant) : void
getResponseParticipants() : ResponseParticipant[]

getControllingOpCenter():Identifier
getControllingOpCenterName():string
getOwnerOrgID():Identifier

getResources() : SharedResourceList
getControlledResources(Identifier opCtrID) : SharedResourceList
hasControlledResources(Identifier opCtrID) : boolean

void setControllingOpCenter(AccessToken token,
 Identifier opCtrID,
 string opCtrName)
void clearControllingOpCenter(AccessToken token)

string reason

Figure 160. ResourceManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-242 04/17/01

3.16.1.9.1 ControllingOpCtrChangeEventInfo (Class)

The ControllingOpCtrChangeEventInfo class defines data to be passed on a
ControllingOpCtrChange event.

3.16.1.9.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do
something which requires that no resources be controlled, yet the Operations Center which
the user is logged in to is still controlling one or more shared resources.

3.16.1.9.3 InvalidOperationsCenter (Class)

Exception that describes a failure caused when the operations center specified is not valid
for the attempted operation.

3.16.1.9.4 LoginFailure (Class)

This class represents an exception that describes a login failure.

3.16.1.9.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

3.16.1.9.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.16.1.9.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.16.1.9.8 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 Servers Detailed Design Rev. 0 3-243 04/17/01

3.16.1.9.9 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the
resource is under the control of a different operations center and the requesting user does
not have the functional right to override the restriction.

3.16.1.9.10 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

3.16.1.9.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.16.1.9.12 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a
response to an event. This could be an external organization, a mobile unit, a mobile device
or special purpose vehicle, or a special needs vehicle equipped to handle unusual or
hazardous situations.

3.16.1.9.13 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.9.14 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects.

3.16.1.9.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.16.1.9.16 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is
implemented by SharedResource objects whose control can be transferred from one
operations center to another.

R1B2 Servers Detailed Design Rev. 0 3-244 04/17/01

3.16.1.9.17 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that
an OperationsCenter is controlling one or more controlled resources but has no users logged
in.

3.16.1.9.18 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.16.1.9.19 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 Servers Detailed Design Rev. 0 3-245 04/17/01

3.16.1.10 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message
notifications. The HAR notifiers can be SHAZAMs or DMS devices that are acting as
SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another
type of DMS message.

SHAZAMFactory

*1

SharedResourceManager

HARMsgNotifierIDList

SHAZAMEventType

1..*1

SHAZAMConfigurationEventInfo SHAZAMStatusChangeEventInfo

HARMessageNotifier

UniquelyIdentifiable

SHAZAMConfiguration

SHAZAMStatus

SHAZAM

SharedResource UniquelyIdentifiable

GeoLocatableCommEnabled

11

11

Identifier

createSHAZAM(AccessToken,
 SHAZAMConfigData) : SHAZAM

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

SHAZAMAdded
SHAZAMRemoved
SHAZAMStatusChanged
SHAZAMConfigurationChanged

SHAZAM theSHAZAM
Identifier id;
SHAZAMConfiguration config

Identifier id
SHAZAMStatus status

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, Chart2HAR):void
getAssociatedHAR() : Chart2HAR
getDirection():Direction
setDirection(Direction):void

factory createSHAZAMConfiguration():SHAZAMConfiguration

string m_name;
string m_location
string m_phoneNumber
Direction m_direction
HAR m_har
long m_refreshIntervalMins

factory createSHAZAMStatus():SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtrID
string m_controllingOpCtrName
NetworkConnectionSite m_networkConnectionSite

setBeaconsOn(AccessToken, CommandStatus):void
setBeaconsOff(AccessToken, CommandStatus):void
refresh(AccessToken, CommandStatus):void
setConfiguration(AccessToken, SHAZAMConfigData, CommandStatus)
getConfiguration(AccessToken) : SHAZAMConfigData
getStatus() : SHAZAMStatus
remove(AccessToken):void

Figure 161. HARNotification (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-246 04/17/01

3.16.1.10.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.16.1.10.2 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.16.1.10.3 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.16.1.10.4 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

3.16.1.10.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.16.1.10.6 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.16.1.10.7 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an

R1B2 Servers Detailed Design Rev. 0 3-247 04/17/01

event on the ResourceManagement event channel to notify others of this condition.

3.16.1.10.8 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.16.1.10.9 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.16.1.10.10 SHAZAMConfigurationEventInfo (Class)

This class contains data that is pushed on the SHAZAMControl CORBA event channel
with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.16.1.10.11 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control
event channel.

3.16.1.10.12 SHAZAMFactory (Class)

This CORBA interface allows new SHAZAM objects to be added to the system.

3.16.1.10.13 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.16.1.10.14 SHAZAMStatusChangeEventInfo (Class)

This class contains data that is pushed on a SHAZAMControl event channel with a
SHAZAMStatusChanged event.

3.16.1.10.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-248 04/17/01

3.16.1.11 LibraryManagement (Class Diagram)

This class diagram shows all classes and relationships relating to message libaries.

Message

1

1

LibraryEventType StoredMessageData

StoredMessageAddedEventInfo StoredMessageRemovedEventInfo LibraryNameChangedEventInfoLibraryAddedEventInfo

UniquelyIdentifiable

*1
*

StoredMessageList

MessageLibraryList

1..*

*

1..*

1

1

MessageLibrary
MessageLibraryFactory

StoredMessage

validateMessageContent():void;
LibraryAdded
LibraryRemoved
LibraryNameChanged
StoredMessageAdded
StoredMessageRemoved
StoredMessageChanged

Identifier msgID
Identifier libID
string description
string category
string lastModifiedBy
Message msg

StoredMessage storedMsg;;
StoredMessageData msgData;

Identifier msgID
Identifier libID

Identifier id;
string name;

Identifier id;
MessageLibrary lib;
string name;

getID()
getName()

setName(AccessToken token, string name):void
createStoredMessage(AccessToken token,
 Message msg,
 string description,
 string category):StoredMessage
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean
isMessageUsedByAnyPlan(Identifier msgID):boolean
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void

createLibrary(AccessToken token,string name):MessageLibrary
getLibraryList():MessageLibraryList

getMessageData():StoredMessageData
getMessage():Message
setMessage(AccessToken, Message):void
setMessageData(AccessToken token,
 string description,
 string category,
 Message msg):void
 remove(AccessToken):void

Figure 162. LibraryManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-249 04/17/01

3.16.1.11.1 LibraryAddedEventInfo (Class)

This struct defines data passed with a DMSLibraryAdded event.

3.16.1.11.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a LibraryManagement event
channel.

3.16.1.11.3 LibraryNameChangedEventInfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.16.1.11.4 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.16.1.11.5 MessageLibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.16.1.11.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.16.1.11.7 MessageLibraryList (Class)

A collection of MessageLibrary objects.

3.16.1.11.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.16.1.11.9 StoredMessageAddedEventInfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.16.1.11.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

3.16.1.11.11 StoredMessageList (Class)

A collection of StoredMessage objects.

R1B2 Servers Detailed Design Rev. 0 3-250 04/17/01

3.16.1.11.12 StoredMessageRemovedEventInfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.16.1.11.13 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-251 04/17/01

3.16.1.12 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the
CHART II system.

LogIterator LogEntryDataList

LogEntryData LogEntryList

LogEntryLogFilter

1..*1

1..*

1
getMoreEntries(long maxCount) : LogEntryList
destroy():void

long timeOfLastUse sequence LogEntryData
String entryText
Identifier trafficEventID

sequence LogEntry

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier eventID
string m_opCenterName
string m_containsText

Figure 163. LogCommon (Class Diagram)

3.16.1.12.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.16.1.12.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.16.1.12.3 LogEntryDataList (Class)

The LogEntryDataList is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataList will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

R1B2 Servers Detailed Design Rev. 0 3-252 04/17/01

3.16.1.12.4 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a LogIterator from which additional LogEntryList sequences can
be requested, in order to complete the entire query.

3.16.1.12.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.16.1.12.6 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 Servers Detailed Design Rev. 0 3-253 04/17/01

3.16.1.13 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

TrafficEventType

LaneState

11

11
LaneConfiguration

Lane

Ramp

*

1

Shoulder

*1

TrafficEvent

RoadwayEvent

ActionEvent

CongestionEvent

SafetyMessageEvent

PlannedRoadwayClosure

SpecialEvent

WeatherSensorEvent

DisabledVehicleEventWeatherServiceEvent

Incident

ResponsePlanItem CommandStatus ResponsePlanItemData

DMSRPIData HARRPIData

1 1

*

1

OrganizationParticipation

ResourceDeployment

*

1

TrafficEventFactory ResponseParticipation

TYPE_PLANNED_ROADWAY_CLOSURE
TYPE_INCIDENT
TYPE_DISABLED_VEHICLE
TYPE_WEATHER_SENSOR_ALERT
TYPE_WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE_CONGESTION
TYPE_RECURRING_CONGESTION
TYPE_SAFETY
TYPE_SPECIAL_EVENT

LANE_OPEN
LANE_CLOSED
LANE_NOT_EXIST

getParticipationData() : ResponseParticipationData
setNotified(AccessToken token,
 boolean hasBeenNotified) : void
overrideNotificationTime(AccessToken token ,
 TimeStamp notificationTime) : void
remove(AccessToken token) : void

setRespondedToEvent(AccessToken token,
 boolean hasResponded) : void
overrideRespondedTime(AccessToken token,
 TimeStamp respondedTime) : void

setArrivedOnScene(AccessToken token,
 boolean hasArrived) : void
setDepartedFromScene(AccessToken token,
 boolean hasDeparted) : void
overrideArrivalTime(AccessToken token,
 TimeStamp arrivalTime) : void
overrideDepartureTime(AccessToken token,
 TimeStampdepartureTime) : void

getTargetID():Identifier
execute(AccessToken token):void
setItemData(AccessToken token,
 ResponsePlanItemData data):void
getItemData(AccessToken token):ResponsePlanItemData
isActive():boolean
hasBeenExecuted():boolean
setActive(AccessToken token):void
setInactive(AccessToken token):void
getDescription():string
setDescription(AccessToken token,
 string description):void
eventTypeChanged(AccessToken token,
 TrafficEvent newTrafficEvt):void
eventTransferred(AccessToken token,
 TrafficEvent newTrafficEvt,
 Identifier opCenterID,
 string opCenterName):void
isUsingObject(Identifier[] objectIDs):boolean
remove(AccessToken token):void

getTargetID():Identifier
isExecutable() : boolean
execute(AccessToken token,
 TrafficEvent trafficEvt,
 CommandStatus status):void
revokeExecution(AccessTiken token,
 TrafficEvent trafficEvt):void
isUsingObject(Identifier[] objectIDs):boolean
eventTypeChanged(AccessToken token,
 TrafficEvent newTrafficEvt):void
eventTransferred(AccessToken token,
 TrafficEvent newTrafficEvt):void

getLanes():Lane[]

Lane[] m_lanes

LaneState m_currentState
Direction m_directionOfTravel
TimeStamp m_timeStateChanged
long m_offsetFromLeft

getName() : string
createTrafficEvent(AccessToken token,
 TrafficEventType type,
 BasicEventData eventData,
 LogEntry[] initialEntries):TrafficEvent
getTrafficEvents():TrafficEvent[]
getStandardLaneConfigurations():LaneConfiguration[]

addLogEntry(AccessToken token,
 string text):void
addResponseParticipation(AccessToken token,
 ResponseParticipationData rpdata):void
addResponseItem(AccessToken token,
 ResponsePlanItemData rpid):void
associateEvent(AccessToken token,
 TrafficEvent eventToAssociate,
 boolean primary): void
removeEventAssociation(AccessToken token,
 TrafficEvent associatedEvent,
 Identifier associatedEventID):void
changeType(AccessToken token,
 TrafficEventType newEventType):void
close(AccessToken token):void
isClosed(TimeStamp closureTme):boolean
overrideClosureTime(AccessToken token,
 TimeStamp closeTime);void
executeResponse(AccessToken token):void
getAssociatedEvents():Identifier[]
getHistory(LogFilter filter,
 long maxCount,
 LogEntry[] entries):LogIterator
isPrimary():boolean
setPrimary(AccessToken token):void
setSecondary(AccessToken token):void
getResponseParticipations():ResponseParticipation[]
getBasicEventData():BasicEventData

getLaneConfiguration():LaneConfiguration
setLaneConfiguration(AccessToken token,
 LaneConfiguration laneConfig)

isRecurring(AccessToken token)
setRecurring(AccessToke token,
 boolean isRecurring):void

m_recurring

setVehicleData(AccessToken token,
 IncidentVehicleData vehicleData):void
setType(AccessToken token,
 IncidentType type):void
setRoadConditions(AccessToke token,
 RoadConditionsData roadConditions):void
overrideLaneOpenCloseTime(
 AccessToken token,
 long laneOffsetFromLeft,
 TimeStamp timeOpenedOrClosed):void

Figure 164. TrafficEventManagement (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-254 04/17/01

3.16.1.13.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not
fit well into the other event categories. An example of this type of event would be debris in
the roadway.

3.16.1.13.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.16.1.13.3 CongestionEvent (Class)

This class models roadway congestion that may be tagged as recurring or non-recurring
through the use of an attribute.

3.16.1.13.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.16.1.13.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.16.1.13.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.16.1.13.7 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

3.16.1.13.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

R1B2 Servers Detailed Design Rev. 0 3-255 04/17/01

3.16.1.13.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.16.1.13.10 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.16.1.13.11 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.16.1.13.12 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will
be expanded in future releases to include interfacing with the EORS system.

3.16.1.13.13 Ramp (Class)

This class represents a ramp type traffic lane.

3.16.1.13.14 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.16.1.13.15 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanItem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.16.1.13.16 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.16.1.13.17 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.16.1.13.18 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

R1B2 Servers Detailed Design Rev. 0 3-256 04/17/01

3.16.1.13.19 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety
message to a device.

3.16.1.13.20 Shoulder (Class)

This class represents a shoulder type traffic lane.

3.16.1.13.21 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or
professional sporting event.

3.16.1.13.22 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.16.1.13.23 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.16.1.13.24 TrafficEventType (Class)

This enum defines the types of traffic events that are supported by the system.

3.16.1.13.25 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the
system’s weather monitoring devices. Operators will need to manually enter the
information in these events for this release. In future releases, these events will be
automatically generated by the system.

3.16.1.13.26 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by
an operator in response to receiving an alert from the national weather service.

R1B2 Servers Detailed Design Rev. 0 3-257 04/17/01

3.16.1.14 TrafficEventManagement2 (Class Diagram)

TrafficEventEventType TrafficEventAddedInfo

LogEntriesAdded

TrafficEventAssociatedInfo

TrafficEventAssociationRemovedInfo

LaneConfigurationChangedInfo

TrafficEventTypeChangedInfo

ResponsePlanItemInfo

ResponsePlanItemsRemovedInfo

ResponseParticipationAddedInfo

ResponseParticipationRemovedInfo

ResponseParticipationChangedInfo

ResponsePlanItemStatusUpdate

ResponsePlanStatusChangedInfo

IncidentType

ResponseParticipant

1

1

11

1

ResponsePlanItemStatus

1

1

ResponseParticipationData

OrganizationParticipationDataResourceDeploymentData

DisabledVehicleData
RoadConditionsData

BasicEventData

IncidentVehicleData

IncidentData ActionEventData
1

ActionEventAdded
CongestionEventAdded
DisabledVehicleEventAdded
HistoryLogEntriesAdded
IncidentAdded
LaneConfigurationChanged
OrganizationParticipationAdded
OrganizationParticipationChanged
ParticipationRemoved
PlannedRoadwayClosureEventAdded
ResourceDeploymentAdded
ResourceDeploymentChanged
ResponsePlanItemAdded
ResponsePlanItemModified
ResponsePlanItemRemoved
ResponsePlanStatusChanged
SafetyEventAdded
SpecialEventAdded
TrafficEventAssociated
TrafficEventAssociationRemoved
TrafficEventClosed
TrafficEventDeleted
TrafficEventStateChanged
TrafficEventTypeChanged
WeatherSensorEventAdded
WeatherServiceEventAdded

TrafficEvent theTrafficEvent
BasicEventData trafficEventData

Identifier trafficEventID
LogEntry[] logEntries

Identifier primaryEventID
TrafficEvent primaryEvent
Identifier secondaryEventID
TrafficEvent secondaryEvent

Identifier trafficEventAID
Identifier trafficEventBID

Identifier eventID
LaneConfiguration newConfiguration

Identifier eventID
TrafficEvent newTrafficEvent
BasicEventData newEventData

Identifier trafficEventID
Identifier planItemID
string planItemName
ResponsePlanItem planItem
ResponsePlanItemData planItemData

Identifier trafficEventID
Identifier[] planItemIDs

Identifier trafficEventID
ReponseParticipationData participationData
ResponseParticipation participation

Identifier trafficEventID
Identifier participationID

Identifier trafficEventID
ResponseParticipationData participationData

Identifier planItemID
ResponsePlanItemStatus planItemStatus

Identifier trafficEventID
ResponsePlanItemStatusUpdate[] itemStatusList

TYPE_COLLISION

Identifier m_participationID
ResponseParticipant m_participant
boolean m_notified
TimeStamp m_timeNotified

boolean m_responded
TimeStamp m_timeResponded

boolean m_arrived
TimeStamp m_timeArrived
boolean m_departed
TimeStamp m_timeDeparted

string m_tagStateOfIssue
string m_tagNumber
boolean m_tireChange
boolean m_hotShot
boolean m_water
boolean m_gas
boolean m_directions
boolean m_ownDisposition
boolean m_callForService
boolean m_goneOnArrival
boolean m_abandonedVehicle
boolean m_relayOperator
boolean m_other
string m_otherDescription

boolean wet
boolean rain
boolean fog
boolean iceOrSnow

isValidForOpeningEvent():boolean

string m_locationDesc
Direction m_direction
string m_source
string m_county
string m_description
boolean m_isSceneCleared
TimeStamp m_sceneClearedTime
boolean m_isDelayCleared
TimeStamp m_delayClearedTime
boolean m_isConfirmed
TimeStamp m_confirmedTime
boolean m_isFalseAlarm
boolean m_isClosed
TimeStamp m_closedTime
long m_maxQueueLength
Identifier m_controllingOpCenterID
string m_controllingOpCenterName

long numCarsInvolved
long numCarsOverturned
long numPickupVanSuvsInvolved
long numPickupVanSuvsOverturned
long numSingleUnitTrucksInvolved
long numSingleUnitTrucksOverturned
long numSingleUnitTrucksLostLoad
long numTractorTrailersInvolved
long numTractorTrailersOverturned
long numTractorTrailersLostLoad
long numTractorTrailersJackKnifed
long numMotorcyclesInvolved

IncidentType m_incidentType
RoadConditionsData m_roadConditions
IncidentVehicleData m_vehicleData

string lastKnownState
boolean isActive
boolean hasBeenExecuted

boolean m_signal
boolean m_debrisInRoadway
boolean m_utility
boolean m_other
string m_otherDescription

string m_name
ResponseParticipantType m_type

Figure 165. TrafficEventManagement2 (Class Diagram)

3.16.1.14.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.16.1.14.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will
inherit all data shown in this class.

R1B2 Servers Detailed Design Rev. 0 3-258 04/17/01

3.16.1.14.3 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.16.1.14.4 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.16.1.14.5 IncidentType (Class)

This enumeration lists all possible incident types.

3.16.1.14.6 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.16.1.14.7 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic
event is changed.

3.16.1.14.8 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event
history log of a traffic event.

3.16.1.14.9 OrganizationParticipationData (Class)

This class represents the data required to describe an organization’s participation in the
response to a traffic event.

3.16.1.14.10 ResourceDeploymentData (Class)

This class represents the data required to describe a resource’s participation in the response
to a traffic event.

3.16.1.14.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.16.1.14.12 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.16.1.14.13 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

R1B2 Servers Detailed Design Rev. 0 3-259 04/17/01

3.16.1.14.14 ResponsePlanStatusChangedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items in
the response plan of a traffic event change state.

3.16.1.14.15 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.16.1.14.16 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the
response to a particular traffic event.

3.16.1.14.17 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.16.1.14.18 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response
participation object changes state.

3.16.1.14.19 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added
or an existing response plan item is modified.

3.16.1.14.20 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.16.1.14.21 ResponsePlanItemStatusUpdate (Class)

This structure contains data that describes a status change to a particular response plan item.

3.16.1.14.22 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the
system.

3.16.1.14.23 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

R1B2 Servers Detailed Design Rev. 0 3-260 04/17/01

3.16.1.14.24 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic
events is removed.

3.16.1.14.25 TrafficEventEventType (Class)

This enumeration defines the types of CORBA events that can be broadcast on a Traffic
Event related CORBA Event channel.

3.16.1.14.26 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The
traffic event object that represented the traffic event previously is removed from the system
and is replaced by the newTrafficEvent reference contained in this structure. If the
consumer of this CORBA event has stored any references to the traffic event previously,
those references should be replaced with this new reference.

R1B2 Servers Detailed Design Rev. 0 3-261 04/17/01

3.16.1.15 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

Profile

UserManager

1

UserName Role FunctionalRight

ProfileProperty

RoleListUserList FunctionalRightList

*

1

*

1

ProfilePropertyList

*

1

*

1

11
*

setProfileProperties(AccessToken, ProfilePropertyList):void
deleteProfileProperty(AccessToken,ProfileProperties):void
getProfileProperties():ProfilePropertyList

description
name

id
orgFilter

key
value

createUser(AccessToken token,UserName,Password):void
deleteUser(AccessToken,UserName):void
getUsers(AccessToken):UserList
getRoles(AccessToken):RoleList
getUserRoles(AccessToken,UserName):RoleList
getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList
setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void
ping():void
getSystemProfile():Profile
getUserProfile(AccessToken,UserName):Profile

Figure 166. UserManagement (Class Diagram)

3.16.1.15.1 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a
particular capability to perform system functions. Each functional right may be limited by
attaching the identifier of a particular organization to which this right is constrained. This
capability allows an administrator to grant a particular Role the ability to modify only
shared resources owned by the identified organization. The orgFilter identifier CHART2
will allow access to any organizations shared resources.

R1B2 Servers Detailed Design Rev. 0 3-262 04/17/01

3.16.1.15.2 FunctionalRightList (Class)

A list of functional rights.

3.16.1.15.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART II system behaves or presents information to a user.

3.16.1.15.4 ProfilePropertyList (Class)

A list of profile properties.

3.16.1.15.5 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the
system database.

3.16.1.15.6 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the
user all functional rights contained within the role.

3.16.1.15.7 RoleList (Class)

This structure contains a list of roles.

3.16.1.15.8 UserList (Class)

A list of user names.

3.16.1.15.9 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.16.1.15.10 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 Servers Detailed Design Rev. 0 3-263 04/17/01

3.17 TrafficEventModule

3.17.1 Classes

3.17.1.1 TrafficEventHierarchy (Class Diagram)

This diagram depicts the relationships between Traffic event related interfaces and their
implementing classes. It does not show all possible traffic event types. Instead it shows a
few of the many possible types for illustrative purposes. The main point of the diagram is to
show that each TrafficEvent implementation object implements the corresponding CORBA
interface and derives from the implementation object that implements its corresponding
interface’s parent interface.

SafetyMessageEventImpl SpecialEventImpl

DisabledVehicleData

ActionEventImpl

ActionEventData

PlannedRoadwayClosureEventImpl

WeatherSensorEventImpl
WeatherServiceEventImpl

1

1

11

RoadConditionsData

IncidentVehicleData11

TrafficEventGroup

1 1

LaneConfiguration Lane

DisabledVehicleImpl

0,1

1

*

TrafficEventImpl

RoadwayEventImpl

IncidentImpl

1

CongestionEventImpl

1

1

SafetyMessageEventImpl() SpecialEventImpl()

string m_tagStateOfIssue
string m_tagNumber
boolean m_tireChange
boolean m_hotShot
boolean m_water
boolean m_gas
boolean m_directions
boolean m_ownDisposition
boolean m_callForService
boolean m_goneOnArrival
boolean m_abandonedVehicle
boolean m_relayOperator
boolean m_other
string m_otherDescription

ActionEventImpl()

WeatherServiceEventImpl()

boolean wet
boolean rain
boolean fog
boolean iceOrSnow

long numCarsInvolved
long numCarsOverturned
long numPickupVanSuvsInvolved
long numPickupVanSuvsOverturned
long numSingleUnitTrucksInvolved
long numSingleUnitTrucksOverturned
long numSingleUnitTrucksLostLoad
long numTractorTrailersInvolved
long numTractorTrailersOverturned
long numTractorTrailersLostLoad
long numTractorTrailersJackKnifed
long numMotorcyclesInvolved

TrafficEventImpl(TrafficEventGroup, TrafficEventDB)
getEventGroup():TrafficEventGroup
initializeFromImpl(TrafficEventImpl)
getDB():TrafficEventDB

m_type

setLaneConfigurationInMemory(LaneConfiguration)

IncidentImpl()

m_incidentType

getLanes():Lane[]

Lane[] m_lanes LaneState m_currentState
Direction m_directionOfTravel
TimeStamp m_timeStateChanged
long m_offsetFromLeft

CongestionEventImpl()

m_recurring

TrafficEventGroup(TrafficEventModule, DatabaseLogger)
getCurrentEvent()
addLogEntry()
addResponsePlanItem(ResponsePlanItemData)
removeResponsePlanItem(ResponsePlanItemImpl)
executeResponse(items)
getAssociatedEvents()
getBasicEventData()
addResponseParticipation(type, name)
removeResponseParticipation()
getResponseParticipations()
close()
isClosed()
getClosureTime()
associateEvent(token, trafficEvent, isPrimary)
changeEventType()
takeOffline()
getHistory(maxCount)
getHistory(filter, maxCount)
getCurrentTrafficEvent():TrafficEventImpl
getModule():TrafficEventModule
getParticipationObjects():ResourceParticipation[]
getResponsePlanItems():ResponsePlanItem[]
initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)
createTrafficEvent(typeCode)
isPrimary():boolean
setPrimary(boolean isPrimary)
createTrafficEventImpl(typeCode):TrafficEventImpl
getTrafficEventImpl(typeCode):TrafficEventImpl
monitorResponses()
responsePlanItemChanged(itemID)
getControllingOpCenter():identifier
setControllingOpCenter(opCenterID, opCenterName)
-sendResponseStatusUpdate()
-associationRemoved()

m_locationDesc
m_source
m_county
m_description
m_sceneCleared
m_sceneClearedTime
m_delayCleared
m_delayClearedTime
m_isFalseAlarm
m_falseAlarmTime
m_isConfirmed
m_isClosed
m_confirmedTime
m_openedTime
m_closedTime
m_controllingOpCenterID
m_controllingOpCenterName
m_maxQueueLength
TrafficEventModule m_module

DisabledVehicleImpl()

WeatherSensorEventImpl()

boolean m_signal
boolean m_debrisInRoadway
boolean m_utility
boolean m_other
string m_otherDescription

PlannedRoadwayClosureEventImpl()

Figure 167. TrafficEventHierarchy (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-264 04/17/01

3.17.1.1.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.17.1.1.2 ActionEventImpl (Class)

This class provides an implementation of the ActionEvent interface. Each ActionEventImpl
contains a reference to a ActionEventData describing the event.

3.17.1.1.3 CongestionEventImpl (Class)

This class provides an implementation of the CongestionEvent interface. This contains the
state variable to indicate if the event is a recurring event.

3.17.1.1.4 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.17.1.1.5 DisabledVehicleImpl (Class)

This class provides an implementation of the DisabledVehicleEvent interface. Each
DisableVehicleEventImpl contains a reference to DisabledVehicleData that describes the
disabled vehicle details at the scene.

3.17.1.1.6 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables
and processing that are unique to incident type traffic events.

3.17.1.1.7 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.17.1.1.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.17.1.1.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.17.1.1.10 PlannedRoadwayClosureEventImpl (Class)

This class provides an implementation of the PlannedRoadwayClosureEvent interface.

R1B2 Servers Detailed Design Rev. 0 3-265 04/17/01

3.17.1.1.11 RoadConditionsData (Class)

This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.17.1.1.12 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each
RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at
the scene of the event.

3.17.1.1.13 SafetyMessageEventImpl (Class)

This class provides an implementation of the SafetyMessageEvent interface.

3.17.1.1.14 SpecialEventImpl (Class)

This class provides an implementation of the SpecialEvent interface.

3.17.1.1.15 TrafficEventImpl (Class)

This class provides an implementation of the TrafficEvent interface. It contains state
variables and processing that common to all traffic events.

3.17.1.1.16 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the
same traffic event that an operations center is working. A particular traffic event may
initially be created as a particular type of event such as DisabledVehicleEvent and later be
converted to another type of event such as Incident. The group stores all information that is
common to all of these TrafficEvent objects that represent the same roadway event.

3.17.1.1.17 WeatherSensorEventImpl (Class)

This class provides an implementation of the WeatherSensorEvent interface.

3.17.1.1.18 WeatherServiceEventImpl (Class)

This class provides an implementation of the WeatherServiceEvent interface.

R1B2 Servers Detailed Design Rev. 0 3-266 04/17/01

3.17.1.2 TrafficEventModuleClasses (Class Diagram)

This diagram shows traffic event related classes and interfaces.

1

ResourceDeploymentImpl

ResourceMonitorThread

ResponseMonitorThread

1
1

1

1

RoadwayEvent

LogData

11

*1

1

ResponsePlanItem

ResponsePlanItemData

ResponsePlanItemImpl

*1

11

CommLog*1

11 stores
event

history in

1

OrganizationParticipationImpl

TrafficEventGroup

*

1

ServiceApplication

*

1

1

1
11

ResponseParticipation

OrganizationParticipation

ResourceDeployment

DatabaseLogger

*1

RoadwayEventImpl

1

1

CommandStatus

1

1
PushEventSupplier

TrafficEventModuleProperties

1

1

TrafficEventModule

ServiceApplicationModule

1

IncidentImpl

1

LaneConfiguration

0..1

1

TrafficEventFactory

SharedResourceManager

TrafficEventFactoryImpl

TrafficEvent

Incident

*

TrafficEventDB

java.lang.Thread

ResourceDeploymentImpl(TrafficEventGroup,
 ResourceDeploymentData)

m_resourceName
m_resourceType
m_notified
m_timeNotified
m_arrived
m_timeArrived
m_departed
m_timeDeparted

OrganizationParticipationImpl(TrafficEventGroup,
 OrganizationParticipationData)

m_organizationName
m_notified
m_timeNotified
m_responded
m_timeResponded

ResponsePlanItemImpl(TrafficEventGroup, ResponsePlanItemData)
getLastKnownState():String
-setExecuted(boolean)

m_isActive
m_hasExecuted
m_lastKnownState
m_removed

String m_text
byte[] token
Identifier eventID

getParticipationData() : ResponseParticipationData
setNotified(AccessToken token,
 boolean hasBeenNotified) : void
overrideNotificationTime(AccessToken token ,
 TimeStamp notificationTime) : void
remove(AccessToken token) : void

DatabaseLogger(tableName)
addEntry(logEntry)
getEntries(filter, maxCount)
shutdown()

getOfflineThresholdHours():int
getSharedResourceMonitorIntevalSeconds():int
getTrafficEventResponseMonitorIntervalSeconds():int

getLanes():Lane[]

Lane[] m_lanes

TrafficEventDB(DBConnectionManager)
getTrafficEvents():TrafficEventGroup[]
addResponsePlanItem(trafficEventID, ResponsePlanItemImpl)
updateResponsePlanItem(trafficEventID, ResponsePlanItemImpl)
addEventAssociation(trafficEventID, associatedEventID)
getAssociatedEvents(trafficEventID):Identifier[]
removeEventAssociation(trafficEventID, assoicatedEventID)
updateEventState(BasicEventData)
addTrafficEventToGroup(trafficEventID, trafficEventImpl)
markItemForRemoval(trafficEventID, planItemID)
setItemActive(trafficEventID, planItemID, isActive)
removeResponsePlanItem(trafficEventID, planItemID)
updateResponsePlanItemState(planItemID, hasExecuted, isActive)
setLaneConfiguration(trafficEventID, LaneConfiguration)
recordLaneStateChange(trafficEventID, laneOffset, newState)
overrideLaneStateChangeTime(trafficEventID, laneOffset, userTime)
setEventPrimary(trafficEventID, isPrimary)
addOrgParticipant(trafficEventID, orgParticipationData)
removeOrgParticipant(trafficEventID, participantID)
addResourceDeployment(trafficEventID, resourceDeploymentData)
removeResourceDeployment(trafficEventID, deploymentID)
takeEventOffline(trafficEventID);
getStandardLaneConfigurations():LaneConfiguration[]

DBConnectionManager m_db

getName() : string
createTrafficEvent(AccessToken token,
 TrafficEventType type,
 BasicEventData eventData,
 LogEntry[] initialEntries):TrafficEvent
getTrafficEvents():TrafficEvent[]
getStandardLaneConfigurations():LaneConfiguration[]

trafficEventFactoryImpl(TrafficEventModule,
offlineThresholdHours)
shutdown()
monitorResources()
takeEventsOffline()
monitorResponses()
-getControllingOpCenters():Identifier[]
-getOpCenterRef(opCenterID):OperationsCenter

TrafficEventModule m_module;

IncidentImpl()

m_incidentType

TrafficEventGroup(TrafficEventModule, DatabaseLogger)
getCurrentEvent()
addLogEntry()
addResponsePlanItem(ResponsePlanItemData)
removeResponsePlanItem(ResponsePlanItemImpl)
executeResponse(items)
getAssociatedEvents()
getBasicEventData()
addResponseParticipation(type, name)
removeResponseParticipation()
getResponseParticipations()
close()
isClosed()
getClosureTime()
associateEvent(token, trafficEvent, isPrimary)
changeEventType()
takeOffline()
getHistory(maxCount)
getHistory(filter, maxCount)
getCurrentTrafficEvent():TrafficEventImpl
getModule():TrafficEventModule
getParticipationObjects():ResourceParticipation[]
getResponsePlanItems():ResponsePlanItem[]
initialize(ServiceApplication, DatabaseLogger, TrafficEventDB, logEntries)
createTrafficEvent(typeCode)
isPrimary():boolean
setPrimary(boolean isPrimary)
createTrafficEventImpl(typeCode):TrafficEventImpl
getTrafficEventImpl(typeCode):TrafficEventImpl
monitorResponses()
responsePlanItemChanged(itemID)
getControllingOpCenter():identifier
setControllingOpCenter(opCenterID, opCenterName)
-sendResponseStatusUpdate()
-associationRemoved()

m_locationDesc
m_source
m_county
m_description
m_sceneCleared
m_sceneClearedTime
m_delayCleared
m_delayClearedTime
m_isFalseAlarm
m_falseAlarmTime
m_isConfirmed
m_isClosed
m_confirmedTime
m_openedTime
m_closedTime
m_controllingOpCenterID
m_controllingOpCenterName
m_maxQueueLength
TrafficEventModule m_module

getServiceApp():ServiceApplication
getEventSupplierl():PushEventSupplier
getDB():TrafficEventDB
getProperties():TrafficEventModuleProperties
getPOA():POA
getORB():ORB
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
addCommLogEntry(token, text, eventID)
-addCommLogs(CommLog[])
-storeLogData(LogData)
-getLogData():LogData

ResourceMonitorThread(factoryImpl)
shutdown()

ResponseMonitorThread(factoryImpl)
shutdown()

Figure 168. TrafficEventModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-267 04/17/01

3.17.1.2.1 CommLog (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART II system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.17.1.2.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.17.1.2.3 DatabaseLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.17.1.2.4 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

3.17.1.2.5 java.lang.Thread (Class)

This class represents a java thread of execution.

3.17.1.2.6 IncidentImpl (Class)

This class provides an implementation of the Incident interface. It contains state variables
and processing that are unique to incident type traffic events.

3.17.1.2.7 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

R1B2 Servers Detailed Design Rev. 0 3-268 04/17/01

3.17.1.2.8 LogData (Class)

3.17.1.2.9 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

This class maintains a mapping between text messages and the corresponding audio clip file
information. This is accomplished by maintaining a list of TreeMaps (one for each audio
format supported) with text as key and audio clip information as the value. This class also
helps manage the amount of hard drive space consumed by the audio clips by deleting the
old clip files when the maximum cache size limit is reached. The maximum cache size limit
can be set by the administrator using the system properties.

3.17.1.2.10 OrganizationParticipationImpl (Class)

This class provides an implementation of the OrganizationParticipation interface. Each
instance represents a particular organization’s participation activities in response to a
particular traffic event.

3.17.1.2.11 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.17.1.2.12 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanItem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.17.1.2.13 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

R1B2 Servers Detailed Design Rev. 0 3-269 04/17/01

3.17.1.2.14 ResponsePlanItemImpl (Class)

This class provides an implementation of the ResponsePlanItem interface. Each instance
represents one particular part of a response plan that can be in an executed, active or
inactive state. This class also provides an implementation of the CommandStatus interface.
This implies that devices that are activated on behalf of this traffic event can hold a copy of
this object and call its update() method to provide a running status of the plan item as it
changes.

3.17.1.2.15 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.17.1.2.16 ResourceDeploymentImpl (Class)

This class provides an implementation of the ResourceDeployment interface. Each instance
represents a resource that has been deployed to the scene of a traffic event. This class
contains the state data that describes the resource’s involvement in the traffic event.

3.17.1.2.17 ResourceMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it
to monitor its shared resources.

3.17.1.2.18 ResponseMonitorThread (Class)

This thread will periodically call the traffic event factory implementation object and force it
to notify each traffic event to monitor its response plan items for status changes.

3.17.1.2.19 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.17.1.2.20 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

3.17.1.2.21 RoadwayEventImpl (Class)

This class provides an implementation of the RoadwayEvent interface. Each
RoadwayEventImpl contains a reference to a LaneConfiguration that describes the lanes at
the scene of the event.

R1B2 Servers Detailed Design Rev. 0 3-270 04/17/01

3.17.1.2.22 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.17.1.2.23 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.17.1.2.24 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.17.1.2.25 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.17.1.2.26 TrafficEventDB (Class)

This class provides an interface for the traffic event module to utilize the database. The
interface provides methods needed to store and retrieve TrafficEvent related information.

3.17.1.2.27 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.17.1.2.28 TrafficEventFactoryImpl (Class)

This class is capable of creating a new TrafficEvent object in the system. Additionally, it
acts as a manager of existing traffic event objects by performing calls on all traffic event
objects such as shared resource or response plan monitoring.

R1B2 Servers Detailed Design Rev. 0 3-271 04/17/01

3.17.1.2.29 TrafficEventGroup (Class)

This class is used to group together different TrafficEvent objects that all represent the
same traffic event that an operations center is working. A particular traffic event may
initially be created as a particular type of event such as DisabledVehicleEvent and later be
converted to another type of event such as Incident. The group stores all information that is
common to all of these TrafficEvent objects that represent the same roadway event.

3.17.1.2.30 TrafficEventModule (Class)

This class provides the resources and support functionality necessary to serve traffic event
related objects in a service application. It implements the ServiceApplicationModule
interface that allows it to be served from any ServiceApplication.

3.17.1.2.31 TrafficEventModuleProperties (Class)

This class provides operations for getting values in the service’s java properties file.

R1B2 Servers Detailed Design Rev. 0 3-272 04/17/01

3.17.2 Sequence Diagrams

3.17.2.1 TrafficEventModule:AddCommLogEntry (Sequence Diagram)

When a traffic event is opened, closed, or it changes types, it needs to add an entry to the
communications log. This diagram depicts the fault tolerance built into this operation.
When the TrafficEventModule is called to add an entry to the communications log, it will
check if it has any cached entries that need to be added. These cached entries would be the
result of prior calls that were not successful. If there are cached entries, the module will
attempt to add them to the last communications log that was successfully used. If this is the
first attempted use of a communications log or the attempt to use the last communications
log fails, the module will search the trading service for all known communications logs.
Each of these logs will be stored for future use. The module will then begin attempting to
log all cached log data to each of the discovered communications logs until there are no
more communications logs to try, or there are no more entries to log. If all communications
logs are tried and the entry still could not be logged, the entry will be added to the cache
and this process will repeat again the next time a comm log entry is attempted.

Check if there are any log entries
that could not be added previously. If
there are they should be logged first.

[while
more log

data]

getLogData

LogData

[while more
log data

and no exceptions]

getLogData

[unable to
log entry]

storeLogData

TrafficEvent
TrafficEventModule

addCommLogEntry

CosTrading.RegisterCommLog

Attempt to add the entry to the last CommLog
that was successfully used.

addEntry

[Exception caught]
query "CommLog objects"

addEntry

[exception caught]
addCommLogs

[* while more
comm logs and
not successful]

Figure 169. TrafficEventModule:AddCommLogEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-273 04/17/01

3.17.2.2 TrafficEventModule:AddLogEntry (Sequence Diagram)

This diagram shows how an entry is added to a traffic event’s history log. The
TrafficEventImpl is called to add the log entry, and after checking the user’s rights, it calls
the TrafficEventGroup to add the entry. The TrafficEventGroup creates a new LogEntry
and calls the DatabaseLogger to add the entry to the database. A CORBA event is then
pushed through the event service, to update all of the GUIs with the new entry.

ORB

TrafficEventImpl

addLogEnty

TokenManipulator OperationsLogTrafficEventGroup

checkAccess

[no rights]
AccessDenied

[no rights]
log "Invalid access attempt"

addLogEntry

LogEntry

DatabaseLogger TrafficEventModule DatabaseLogger

getUserName
getOpCenterName

create

addEntry

getPushSupplier

push(HistoryLogEntriesAdded)

Figure 170. TrafficEventModule:AddLogEntry (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-274 04/17/01

3.17.2.3 TrafficEventModule:AddResponseItem (Sequence Diagram)

This diagram shows how a response item is added to a traffic event’s response plan. The
items can either be executable or non-executable (i.e., a placeholder containing only a
target). The TrafficEvenImpl is called to add the ResponsePlanItem. After checking the
user’s rights, it calls the TrafficEventGroup to add the item. The TrafficEventGroup checks
for existing ResponsePlanItems with the same target as the item being added. If an existing
item is found and the new item is not executable, the new item is ignored. If an existing
item is found and the new item is executable, the group sets the data in the existing
ResponsePlanItem, which will overwrite the old data and cause the item’s state to be “not
executed” if it is already executed (see the sequence diagram
SetMessageForUseInResponsePlan for details). Otherwise, if there was not already an
existing item, a new ResponsePlanItemImpl is created, added to the database, and activated.
A CORBA event is pushed to the event service to inform the GUIs of the new item, and
entries are added to the traffic event’s history log and the operations log.

POA

activate_object (ResponsePlanItem)

A non-executable item
will not overwrite
an executable item because
the executable item has
data that should not be
implicitly discarded. This
operation will be ignored.

If an executable item
is being added, the new
item's data will overwrite
the old data and the item
will be set to "not executed".
See the diagram:
SetMessageForUseInResponsePlan
for details.

[item with matching
target in plan and

new item is
executable]
setItemData[setItemData called]

This call is made to check if
the new response plan item
is targeting the same object
as an existing item.

getTargetID

[setItemData called]

DatabaseLogger
Traffic

EventDB

addResponsePlanItem

PushEventSupplier

push "ResponsePlanItemAdded"

addLogEntry

ResponsePlanItem

ResponsePlanItemImpl

[* for each
ResponsePlanItem]

[item with matching target already in plan
and new item not executable]

[item with matching
target already in plan

and new item not
executable]

OperationsLog

[item with matching
target not in plan]

create

ORB
TrafficEventImpl

Trafffic
EventModule

log "Invalid access attempt"

log "item added to response plan"

getDB

getEventSupplier

addResponseItem
[event closed]

CHART2Exception

TokenManipulator TrafficEventGroup

checkAccess

[no rights]
AccessDenied getOpCenterID

[not from controlling op
center and no override

right]
ResourceControlConflict addResponsePlanItem

Figure 171. TrafficEventModule:AddResponseItem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-275 04/17/01

3.17.2.4 TrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is added to a traffic event. The
TrafficEventImpl is called to add the response participation, and after checking the user’s
rights, calls the TrafficEventGroup to add the response participation. The
TrafficEventGroup creates a new OrganizationParticipationImpl or a
ResourceDeploymentImpl, then adds it to the database, activates the object to receive
CORBA calls, and pushes a CORBA event through the event service so that all of the GUIs
will be updated. An entry is also added to the traffic event’s history log.

TrafficEventDB

[OrganizationParticipationData]
addOrgParticipation

getDB

addLogEntry

log "Response participation added"

TrafficEventImpl

addResponseParticipation

TrafficEventModule

[event closed]
CHART2Exception

[not from controlling op center
and no override]

ResourceControlConflict

TrafficEventGroup

addResponseParticipation
[Participant previously

added]
CHART2Exception

[no rights]
AccessDenied

[no rights]
log "Invalid access attempt"

PushEventSupplier

getPOA

POA

getPushSupplier

[OrganizationParticipationData]
push(OrganizationParticipationAdded)

[previously added]
CHART2Exception

OrganizationParticipationImpl[OrganizationParticipationData]
create

getControllingOpCenter

[OrganizationParticipationData]
activate_object

ORB

OperationsLog

ResourceDeploymentImpl[ResourceDeploymentData]
create

[ResourceDeploymentData]
addResourceDeployment

[ResourceDeploymentData]
activate_object

[ResourceDeploymentData]
push(ResourceDeploymentAdded)

Figure 172. TrafficEventModule:AddResponseParticipation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-276 04/17/01

3.17.2.5 TrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how a traffic event is associated to another traffic event. The
TrafficEventImpl is called to associate the other event, and it calls the TrafficEventGroup
after checking the rights. The TrafficEventGroup updates the database, adds entries to its
history, and calls the other (secondary) event. The other event calls its event group, which
marks itself as secondary, and updates the database. CORBA events are pushed by both
TrafficEventGroups to notify the GUIs of the new association, and the new association is
also stored in the database. Entries are added to the traffic events’ histories and the
operations log to record the change.

log "Event associated"

TrafficEventModule TrafficEventDB

getDB
addEventAssociation

[error adding association]
CHART2Exception

[error adding
association]

CHART2Exception

TrafficEventImpl TrafficEventGroup

addLogEntry
"Event associated"

[is primary]
associateEvent

checkAccess

log "Event associated"

log "Event associated"

[is primary]
push(TrafficEventAssociated)

addLogEntry
"Event associated

and set to secondary"

getDB

addEventAssociation

This call is actually made via the
TrafficEvent CORBA interface. The call
to the TrafficEventImpl is shown for brevity.

associateEvent

[is secondary]
setPrimary(false)

[is secondary]
updateEventState

getPushSupplier

PushEventSupplier

push
(EventStateChanged)

[TrafficEvent Closed]
CHART2Exception associateEvent

ORB

TrafficEventImpl

associateEvent

TokenManipulator OperationsLogTrafficEventGroup

checkAccess

log "Invalid Access Attempt"[no rights]
AccessDenied

Figure 173. TrafficEventModule:AssociateEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-277 04/17/01

3.17.2.6 TrafficEventModule:ChangeEventType (Sequence Diagram)

This diagram shows how the traffic event’s type is changed. The TrafficEventImpl is called
to change the type, and it calls the TrafficEventGroup after checking the user’s rights. The
TrafficEventGroup then searches in the event’s previous history to find an event of the
same type. If one is not found, a new TrafficEventImpl is created and initialized from the
existing TrafficEventImpl, then it is added to the TrafficEventGroup and the database. Then
it gets the old lane configuration from the TrafficEventGroup and sets it into the new
TrafficEventImpl, if it’s a RoadwayEvent. Then all of the ResponsePlanItems are notified
of the new TrafficEvent so that they can switch their references to use the new event. The
old TrafficEvent is withdrawn from the trading service and the new TrafficEvent is
published in the trading service, and a CORBA event is pushed to update the GUIs. Entries
are added to the traffic event’s history log, the communications log, and the operations log,
and the old TrafficEvent is deactivated.

[new impl is roadway
event &&

laneConfig != null]
setLaneConfigurationInMemory

ORB

TrafficEventImpl

changeType

POA

getPOA
deactivate_object "old traffic event"

log "Traffic event type changed"

addCommLogEntry
"Traffic event type changed"

addLogEntry
"Traffic Event type changed"

push(TrafficEventTypeChanged)

activate_object (TrafficEvent)

getEventSupplier

TrafficEventModule

[impl of type not found]
getDB

[Already of desired type]
Success

TrafficEventDB

[impl of type not found]
addTrafficEventToGroup

This method will search all traffic events in this event groups history.
if a TrafficEventImpl of the specified type is found, it will return it, otherwise
it will return null.

getTrafficEventImpl

[impl of type not found]
initializeFromImpl

TrafficEventImpl

This object was created during
the call to createTrafficEventImpl.

changeEventType

[Unknown traffic
event type]

UnknownTrafficEventType

withdraw "old event"
getTradingRegister

PushEventSupplierCosTrading.Register

[no rights]
AccessDenied

[event closed]
CHART2Exception

[new impl instanceof
RoadwayEventImpl]

getLaneConfiguration

getControllingOpCenter

[impl of type not found]
createTrafficEventImpl

[Unknown traffic
event type]

UnknownTrafficEventType

OperationsLog

ResponsePlanItemData

TrafficEventGroup

eventTypeChanged

ResponsePlanItem

[* for each response plan item] eventTypeChanged

getServiceApp
registerObject "new event"

ServiceApplication

[Controlled by
another op center
and no override]

ResourceControlConflict

Figure 174. TrafficEventModule:ChangeEventType (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-278 04/17/01

3.17.2.7 TrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows what happens when a traffic event is closed. The TrafficEventImpl is
called to close the event. After checking the user’s rights, it calls the TrafficEventGroup to
close the event. The group updates the event state in the database, and removes all of the
ResponsePlanItems from the event. Entries are added to the traffic event’s history, the
communications log, and the operations log.

log "event closed"

TrafficEventDB

The traffic event group will
record the time of closure
at this point.

getDB
updateEventState

ResponsePlanItemTrafficEventGroup

close

getControllingOpCenter
[Not from controlling op
center and no override]

ResourceControlConflict

ORB

TrafficEvent TokenManipulator OperationsLog

close

checkAccess

[no rights]
AccessDenied

log "Invalid access attempt"

[required data
missing]

CHART2Exception

[already closed]
Success

[* for each
ResponsePlanItem]

ResponsePlanItemDataTrafficEventModule

addCommLogEntry

push(TrafficEventClosed)

PushEventSupplier

Refer to RemoveResponsePlanItem
sequence diagram for details on this
operation.

remove

addLogEntry

Figure 175. TrafficEventModule:CloseEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-279 04/17/01

3.17.2.8 TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

This diagram shows how a new traffic event is created. The TrafficEventFactoryImpl is
called to create the new traffic event. After checking the user’s rights, it creates a new
TrafficEventGroup and calls it to create the appropriate type of TrafficEventImpl, based on
the type of BasicTrafficEventData that is passed in. Then the factory calls the
TrafficEventGroup to initialize. This adds any initial entries to the traffic event’s history
log, activates the TrafficEvent object, and publishes it in the trading service. It also adds
entries to the communications log and the operations log, and pushes a CORBA event
through the event service to inform the GUIs of the creation of the new event.

addGroupToDatabase
addGroup

SafetyMessageEventImpl

SpecialEventImpl

[typeCode == SafetyMessage]
create

[typeCode == SpecialEvent]
create

export(TrafficEvent)

initialize

TrafficEventModule POA
CosTrading.

Register

ORB

TrafficEventFactoryImpl TokenManipulator

TrafficEventGroup

PlannedRoadwayClosureImpl

DisabledVehicleImpl

WeatherSensorAlertImpl

createTrafficEvent
checkAccess

[no rights]
AccessDenied create

createTrafficEvent
[typeCode == Incident]

create
[unknown traffic event type]
UnknownTrafficEventType[UnknownTrafficEventType]

UnknownTrafficEventType

[typeCode ==
PlannedRoadwayClosure]

create

[typeCode ==
DisabledVehicle]

create

[typeCode ==
WeatherSensorAlert]

create

WeatherServiceAlertImpl
[typeCode ==

WeatherServiceAlertImpl]
create

getEventSupplier

This will store the TrafficEventGroup and
the TrafficEvent data in the database.

addLogEntry(eventOpened)

[no rights]
log "invalid access attempt"

OperationsLog

log "New event created"
addCommLogEntry "New Event Opened"

IncidentImpl

getPOA

activate_object(TrafficEvent)

getTradingRegister

PushEventSupplier

[typeCode == ActionEvent]
create

[typeCode == Congestion ||
typecode == RecurringCongestion]

create

ActionEventImpl

CongestionEventImpl

push "traffic event added"

[for each log entry] addLogEntry

[database error]
CHART2Exception

TrafficEventDB

Figure 176. TrafficEventModule:CreateTrafficEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-280 04/17/01

3.17.2.9 TrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a traffic event’s response plan is executed. The TrafficEventImpl
is called to execute the response. It checks the user’s rights and then calls the
TrafficEventGroup to execute the response. The TrafficEventGroup calls each
ResponsePlanItem’s execute method. See the ExecuteResponsePlanItem sequence diagram
for details on how each response plan item is executed. The ResponseMonitorThread will
be running in the background, and will periodically cause the factory to check all of the
TrafficEventGroups for changes in the response plan item status. When prompted by this
thread, each TrafficEventGroup will push a CORBA event to notify the GUIs if any of its
response plan items have changed state.

push(ResponsePlanStatusChanged)

TrafficEventModule

The response monitor
thread will trigger this
method every configurable
interval. sendResponseStatusUpdate

Refer to the
ExecuteResponsePlanItem
sequence diagram for details.

ResponsePlanItem

[* for each response
plan item]

execute

getControllingOpCenter[controlled by
another op center
and no override]

ResourceControlConflict

getPushSupplier

monitorResponses

PushEventSupplier OperationsLog

executeResponse

executeResponse

checkAccess

TrafficEventGroupTokenManipulator ResponseMonitorThread

monitorResponses

[* for each
trafficEventGroup]

[event closed]
CHART2Exception

[no rights]
AccessDenied

log "Invalid access attempt"

TrafficEventImpl

ORB

TrafficEventFactoryImpl

Figure 177. TrafficEventModule:ExecuteResponse (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-281 04/17/01

3.17.2.10 TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)

This diagram shows what happens when a response plan item is executed, either
individually or when a traffic event’s response plan is executed. The user’s rights are
checked, and then the ResponsePlanItemImpl calls the ResponsePlanItemData to execute
the item. The specific type of ResponsePlanItemData will call the appropriate target and the
request to activate the message will be queued. Then the ResponsePlanItemImpl is marked
as “executed”, and the TrafficEventGroup is notified of the change in the item. The
database is updated and an entry is added to the traffic event group’s history log. The
TrafficEventGroup will periodically be called on a background thread to push a CORBA
event for any of its ResponsePlanItems that have changed state.

log ("plan item executed")

ResponsePlanItemData

hasBeenExecuted

[has executed]

ORB

ResponsePlanItemImpl TokenManipulator OperationsLogTrafficEventGroup

execute checkAccess

[no rights]
AccessDenied

log "Invalid access attempt"

getControllingOpCenter

isClosed[event closed]
CHART2Exception

At this point the
ResponsePlanItemData
object will interact with
a device arbitration queue
to activate the message in the
field.

addLogEntry
responsePlanItemChanged

TrafficEventModule TrafficEventDB

execute

getDB

updateResponsePlanItemState

[controlled by
another op center
and no override]

ResourceControlConflict

setExecuted

Figure 178. TrafficEventModule:ExecuteResponsePlanItem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-282 04/17/01

3.17.2.11 TrafficEventModule:GetEventHistoryText (Sequence Diagram)

This diagram shows how entries are retrieved from the traffic event’s history log. The
TrafficEventImpl is called to get the event history. It checks the user’s rights, then calls the
TrafficEventGroup, which calls the DatabaseLogger to get the entries. See the sequence
diagram DatabaseLogger:getEntries for more details.

TrafficEventImpl

getHistory

TrafficEventGroup DatabaseLogger

Refer to DatabaseLogger:getEntries for
details on how the database logger class
handles this method.

getHistory
[no rights]

AccessDenied getEntries

LogEntries
and LogIterator

ORB

Figure 179. TrafficEventModule:GetEventHistoryText (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-283 04/17/01

3.17.2.12 TrafficEventModule:Initialize (Sequence Diagram)

This diagram shows what happens when the TrafficEventModule is initialized. The
ServiceApplication calls the TrafficEventModule to initialize, which reads in the properties
from a file, overriding the default properties. It creates an event channel for traffic events
and publishes the channel in the trading service so that other applications can see it. It
creates a TrafficEventDB object to handle all of the database calls, and a
TrafficEventFactoryImpl object to manage the traffic events. The TrafficEventFactoryImpl
creates a DatabaseLogger for logging the traffic event’s history log, then calls the
TrafficEventDB to load the TrafficEventGroup objects from the database. Then for each
group it will activate the current TrafficEvent, the ResponseParticipation objects, and the
ResponsePlanItem objects. The TrafficEvent is exported to the trading service. The
resource monitor thread and the response monitor thread are created, and the
TrafficEventFactory is exported to the trading service.

[* for each
ResponsePlanItem]

registerObject(TrafficEvent)

ResourceMonitorThread

ResponseMonitorThread

create

create

DatabaseLoggercreate

setDaemon

export(Event Channel)

[* for each traffic
event group]

POA

activate_object
(TrafficEvent)

TrafficEventGroup

CosTrading.Register

getTradingRegister

registerEventChannel

initialize

getDBConnectionManager

TrafficEventDB

TrafficEventFactoryImpl

create

create

export(Traffic Event Factory)

TrafficEventModuleProperties

getDefaultProperties
getProperties

create
getEventChannelFactory

PushEventSupplier

This event channel
is used to push
TrafficEvent state
changes.create

ServiceApplication

TrafficEventModule

initialize

ServiceApplication

[*for each response
participation object]

getTrafficEvents

activate_object
(ResponseParticipation)

activate_object
(ResponsePlanItem)

export(TrafficEvent)

setDaemon

start

start

Figure 180. TrafficEventModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-284 04/17/01

3.17.2.13 TrafficEventModule:MonitorControlledResources (Sequence Diagram)

This diagram shows the periodic maintenance of the traffic events—the monitoring of the
controlling operations center, and the removal of the traffic events from the system. When
the ResourceMonitorThread calls the factory to monitor the resources, the factory first gets
all of the controlling operations centers for all traffic events. If it does not have references
for all of the operations centers’ IDs, it will query the OperationsCenter object from the
trading service. Then it asks each OperationsCenter how many users are logged in. If no
users are logged in, it pushes a CORBA event indicating that shared resources need to be
transferred to another operations center. The ResourceMonitorThread will also call the
factory to check if events need to be removed from the system. The factory asks each closed
traffic event for its closure time and determines whether it has been closed long enough to
remove it from the system. If a traffic event is removed, the database is updated, the offer
is withdrawn from the tradiing service, the CORBA object is deactivated, and a CORBA
event is pushed on the event channel indicating that the traffic event was just deleted.

TrafficEventGroup

[curent time - closure time >=
 takeOfflineThreshold]

takeOffline

isClosed

getClosureTime

getDB
takeEventOffline

[* for each
trafficEvent]

POACosTrading.Register

getTradingRegister
withdraw

getPOA
deactivate_object (TrafficEvent)

push (TrafficEventDeleted)

takeEventsOffline

getOpCenterRef

"Store op center refs"

addLogEntry

[numLoggedInUsers <= 0]
push(UnhandledControlledResourceEvent)

Resource
Monitor
Thread

TrafficEventFactoryImpl TrafficEventModule

monitorResources

getControllingOpCenters

[* for each controlling
op center]

getTradingLookup

CosTrading.Lookup OperationsCenter

[op center ref not found]
query "all op center objects"

getNumLoggedInUsers

getPushEventSupplier

PushEventSupplier

deactivate_object (ResponseParticipation)[* for each
ResponseParticipation]

TrafficEventDB

Figure 181. TrafficEventModule:MonitorControlledResources (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-285 04/17/01

3.17.2.14 TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

This diagram shows what happens when a traffic event association is removed. One of the
TrafficEventImpl objects is called to remove the association. It checks the user’s rights and
removes the association from its TrafficEventGroup and from the database and pushes an
event. It also calls the associated event to remove the association from it. The associated
event does the same thing, but when it calls back to the first TrafficEvent, the association
has already been removed so it returns an exception to the second TrafficEvent and the
association removal is complete.

removeEventAssociation

getDB

removeEventAssociation

[event not associated]
SpecifiedObjectNotFound

TrafficEventModuleTrafficEventGroup TrafficEventDB

removeEventAssociation

SpecifiedObjectNotFound

[no rights]
log "Invalid access attempt"

TrafficEvent

[event closed]
CHART2Exception

ORB

TrafficEventImpl OperationsLog

removeEventAssociation
[no rights]

AccessDenied

associationRemoved

[event not associated]
SpecifiedObjectNotFound

TrafficEventGroup

removeEventAssociation

[event not associated]
SpecifiedObjectNotFound

[event not associated]
SpecifiedObjectNotFound

removeEventAssociation

addLogEntry

log "association removed"

addLogEntry

log "association removed"

PushEvent
Supplier

push (TrafficEventAssociationRemoved)

push (TrafficEventAssociationRemoved)

associationRemoved

[event not associated]

removeEventAssociation

getDB

Figure 182. TrafficEventModule:RemoveEventAssociation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-286 04/17/01

3.17.2.15 TrafficEventModule:RemoveResponseParticipation (Sequence Diagram)

This diagram shows how a response participation is removed from a traffic event. The
ResponseParticipationImpl is called to remove itself. After checking the user’s rights, it
calls the TrafficEventGroup that is attached to and asks it to remove the participation. The
TrafficEventGroup removes it from the database, deactivates the object, pushes a CORBA
event to the event service, and adds entries to the event history log and operations log.

addLogEntry

log "Response participant removed"

PushEventSupplier

getPushSupplier

TrafficEventGroup

removeResponseParticipation

[event closed]
CHART2Exception

getControllingOpCenter
[not from controlling

op center and no
override]

ResourceControlConflict

[no rights]
AccessDenied

OperationsLog

[no rights]
log "Invalid access attempt"

TrafficEventDB

getDB

[participant instanceof
ResourceDeployment]

removeResourceDeploymnet

[participant instanceof
OrganizationParticipation]
removeOrgParticipation

ResponseParticipationImpl

remove

ORB

push(ParticipationRemoved}

getPOA

POA

deactivate_object

TrafficEventModule

Figure 183. TrafficEventModule:RemoveResponseParticipation

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-287 04/17/01

3.17.2.16 TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)

TrafficEventGroup

[not from controlling
op center and no

override]
ResourceControlConflict

ORB

ResponsePlanItemImpl

remove

OperationsLog

[no rights]
AccessDenied[no rights]

AccessDenied
[Event closed]

CHART2Exception

ObjectNotExists

setInactive

POA

getPOA
deactivate_object (ResponsePlanItem)

ArbitrationQueue TrafficEventModule

removeMessage

getDB

getEventSupplier

PushEventSupplierResponsePlanItemData

log "Response Plan item removed"

revokeExecution

removeResponsePlanItem

TrafficEventDB

removeResponsePlanItem

push (responsePlanItemsRemoved)

addLogEntry

Figure 184. TrafficEventModule:RemoveResponsePlanItem (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-288 04/17/01

3.17.2.17 TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

This diagram shows how the lane configuration is set for a roadway event. The
RoadwayEventImpl is called to set the lane configuration. After checking the user’s rights,
it gets the old lane configuration and compares it to the new configuration. If there is a
change in a lane’s state, it records the state change in the database and a log entry is added
to the traffic event’s history log. Then a CORBA event is pushed indicating that the lane
configuration has been set and entries are added to the traffic event’s history log and
operations log.

setLaneConfigurationInMemory

addLogEntry

getDB

push(LaneConfigurationChanged)

LaneConfiguration TrafficEventDB OperationsLog

[no rights]
log "Invalid access attempt"

log "Lane configuration changed"

PushEventSupplierORB

[event closed]
CHART2Exception

RoadwayEventImpl

setLaneConfiguration

LaneConfiguration TrafficEventGroup

[no rights]
AccessDenied

[offset existed in previous config
and state changed]

addLogEntry

getEventSupplier

getModule

getLanes

setLaneConfiguration

[not from controlling op
center and no override]

ResourceControlConflict

TrafficEventModule

[* for each lane
in new config]

getLanes

[offset existed in previous configuration
and state changed]

recordLaneStateChange

This is the existing lane configuration
object.

Figure 185. TrafficEventModule:SetLaneConfiguration (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-289 04/17/01

3.17.2.18 TrafficEventModule:SetMessageForUseInResponsePlan (Sequence
Diagram)

This diagram shows how a message is modified within an existing response plan item. The
ResponsePlanItemImpl is called to set the item data. After checking the user’s rights, it
marks the response plan item as being “not executed”. It updates the plan item in the
database and pushes a CORBA event via the event service indicating that the response plan
item has changed. Entries are added to the traffic event’s history log and the operations log.

log "Response plan item modified"

ORB

ResponsePlanItemImpl OperationsLogTrafficEventGroup TrafficEventModule TrafficEventDB PushEventSupplier

setItemData
[no rights]

accessDenied

[no rights]
log "Invalid access attempt"

getControllingOpCenter[not from controlling
op center and no override]
ResourceControlConflict

[event closed]
CHART2Exception

getDB

addLogEntry

setExecuted(false)

push(ResponsePlanItemModified)

updateResponsePlanItem

getPushSupplier

Figure 186. TrafficEventModule:SetMessageForUseInResponsePlan

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-290 04/17/01

3.17.2.19 TrafficEventModule:Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown. The TrafficEventModule is called to shut
down, and it calls the TrafficEventFactoryImpl, which calls all of the TrafficEventGroups.
Each TrafficEventGroup deactivates the current TrafficEvent and all of its
ResponseParticipation objects and ResponsePlanItem objects. Then the factory shuts down
the resource monitor thread. The module deactivates the TrafficEventFactory object and
shuts down.

[* for each response
plan item]

"Interrupt plan status monitor thread"

deactivate_object (ResponsePlanItem)

delete

[* for each
TrafficEventGroup]

delete

delete

TrafficEventDB

delete

DatabaseLogger

getPOA

deactivate_object (ResponseParticipation)[* for each response
participation]

shutdown

POATrafficEventGroup

deactivate_object(TrafficEventFactory)

shutdown

deactivate_object
(TrafficEvent)

TrafficEventFactoryImpl

shutdown

"Interrupt shared resource monitor thread"

shutdown

ServiceApplication

getPOA

TrafficEventModule

ServiceApplication

Figure 187. TrafficEventModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-291 04/17/01

3.17.2.20 TrafficEventModule:TransferTrafficEvent (Sequence Diagram)

This diagram shows what happens when an event is transferred to another operations
center. The TrafficEventImpl is called to set the controlling operations center, and after
checking the user’s rights, it calls the TrafficEventGroup, which updates the database and
calls all of the ResponsePlanItems to tell them that the event has been tranferred. The
ResponsePlanItems cause the ArbitrationQueue to be called to transfer the event. A
CORBA event is pushed via the event channel and an entry is added to the traffic event’s
history log.

PushEventSupplierResponsePlanItemTrafficEventModule

getDB

TrafficEventDB

updateEventState

TrafficEventGroup

[no rights]
log "Invalid access attempt"[no rights]

AccessDenied setControllingOpCenter

ResponsePlanItemData ArbitrationQueue

eventTransferred eventTransferred
eventTransferred[* for each

ResponsePlanItem]

[invalid ID]
CHART2Exception[invalid ID]

CHART2Exception

setControllingOpCenter

OperationsLog

addLogEntry

log

getPushSupplier
push(TrafficEventStateChanged)

ORB

TrafficEventImpl

Figure 188. TrafficEventModule:TransferTrafficEvent (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-292 04/17/01

3.18 TTSControl

3.18.1 Classes

3.18.1.1 TTSControlModuleClasses (Class Diagram)

The TTSControlModule serves an instance of the TTSConverter interface, which provides
functionality to convert text messages into speech for the CHART2 system. This diagram
shows how the implementation of a TTSConverter CORBA interface relies on other
supporting classes to perform its functions.

FileCacheCleaner

1

1

1

1

*

1

1

TTSControlModuleDB

DBConnectionManager

ServiceApplicationModule

ServiceApplication

1

1

1

1

1

1

java.io.File

AudioPushConsumer

1

1

java.lang.Runnable

java.util.TreeMap

FileCacheManager

FileCacheInfo

TTSTextMessageInfo

1

TTSControlModuleProperties

*1

1

TTSConverter

TTSConverterImpl

AudioDataFormat AudioEncoding

TTSControlModule

TTSServer

1*

1

1

1

1

AudioPushThreadManager

1

1

1

TTSMessageQueue

1

1

*

1

1

1

UniquelyIdentifiable

*

1

1 1

1

1

*

LHTTSEngine

1

Initialize()
Stop()
Say()
ConfigIndex()
ConfigTotal()
ConfigFormat()

AudioPushThreadManager(int numPushThreads)
pushAduio(AudioPushConsumer consumer,
 InputStream stream,
 AudioDataFormat format,
 long chunkSize)
releaseAudioPushThread()
-getAudioPushThread()

m_freeThreads
m_inUseThreads

pushAudio(AudioData data):void
pushAudioProperties(AudioDataFormat format,
 long seconds,
 long size):void
pushFailure(string errMsg):void

TTSControlModuleDB(DBConnectionManager mgr)
insertFileCacheInfo()
getFileCacheInfo():FileCacheInfo[]
deleteFileCacheInfo()
updateFileCacheInfo()

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

TTSControlModuleProperties(Properties props)
getVoiceType()
getAudioFileDirLocation()
getAudioDataFormats()
getAudioFileMaxCacheSize()
getAudioPushThreadPoolSize()

run()

put(Object key, Object value)
get(Object key):value

string text
AudioDataFormat format
long chunkSize
AudioPushConsumer obj
int cmd

FileCacheManager(TTSControlDB db,
 long maxCacheSize)
getFileCacheInfo(String text,
 AudioDataFormat format)
 :FileCacheInfo
createFileCacheInfo(String fileName)
 :FileCacheInfo
-cleanupCachedFiles()
shutdown()

m_maxCacheSize
m_currentCacheSize
m_lastUsedFileCacheList

string m_text
AudioDataFormat m_format
string m_filename
long m_fileSize
long m_lastUsedTimeStamp
long m_voiceSeconds

getSupportedFormats(void):AudioDataFormatList;
convertTextToSpeech(string text,
 AudioDataFormat format,
 long maxChunkSize,
 TTSPriority priority,
 AudioPushConsumer consumer)
getVoiceLength(string text,
 AudioDataFormat format,
 AudioPushConsumer consumer)

TTSConverterImpl(TTSServer server,
 TTSControlDB db,
 long maxCacheSize,
 long numPushThreads)
shutdown()

m_id
m_name

AudioEncoding m_encoding;
float m_sampleRate;
long m_sampleSizeInBits;
long m_channels;
long m_frameSize;
float m_frameRate;
boolean m_bigEndian;

PCM_SIGNED
PCM_UNSIGNED
A_LAW
U_LAW

TTSControlModule()
getProperties():TTSControlModuleProperties

TTSServer()
Initialize(int voiceType,
 AudioDataFormatList formats,
 string fileDirLocation)
GetSupportedAudioFormats()
ConvertTextToSpeech(string text,
 string filename,
 AudioDataFormat format)
Shutdown()

static int VOICE_MALE = 0
static int VOICE_FEMALE = 1
static int VOICE_NEUTRAL = 2
m_supportedAudioDataFormatList

TTSMessageQueue(TTSServer server,
 FileCacheManager mgr,
 long numPushThreads)
addMessage(TTSTextMessageInfo msgInfo,
 TTSPriority priority)
shutdown()
-pushAudioClipInfo(FileCacheInfo fileInfo,
 int cmd,
 AudioPushConsumer consumer)

static int CONVERT_TTS_CMD = 0
static int GET_VOICE_LENGTH_CMD = 1
m_systemMessageList
m_userMessageList

Figure 189. TTSControlModuleClasses (Class Diagram)

3.18.1.1.1 AudioDataFormat (Class)

This structure specifies the format of audio data.

R1B2 Servers Detailed Design Rev. 0 3-293 04/17/01

3.18.1.1.2 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.18.1.1.3 AudioPushConsumer (Class)

This interface is implemented by objects that are intended to receive audio data using the
push model, where the server pushes the data to the consumer. One call to
pushAudioProperties() will always precede any calls to pushAudio().

3.18.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.18.1.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.18.1.1.6 FileCacheCleaner (Class)

This class represents an instance of a thread that is created to delete the audio clips that
have not been used recently when the cache size used by the audio clips exceeds the
maximum limit assigned.

3.18.1.1.7 FileCacheInfo (Class)

This structure specifies the information about an audio clip file, which has been converted
from a text message to voice and cached for future use.

R1B2 Servers Detailed Design Rev. 0 3-294 04/17/01

3.18.1.1.8 FileCacheManager (Class)

This class maintains a mapping between text messages and the corresponding audio clip file
information. This is accomplished by maintaining a list of TreeMaps (one for each audio
format supported) with text as key and audio clip information as the value. This class also
helps manage the amount of hard drive space consumed by the audio clips by deleting the
old clip files when the maximum cache size limit is reached. The maximum cache size limit
can be set by the administrator using the system properties.

3.18.1.1.9 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.18.1.1.10 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.18.1.1.11 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.18.1.1.12 LHTTSEngine (Class)

This interface represents the L&H RealSpeak Server TTS engine used to convert text
messages to speech.

3.18.1.1.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.18.1.1.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2 Servers Detailed Design Rev. 0 3-295 04/17/01

3.18.1.1.15 TTSControlModule (Class)

This class implements the Service Application module interface. It publishes the
TTSConverterImpl object, which provides the functionality to convert text messages to
speech for the CHART2 system. It also creates the RealSpeakServer object, which provides
the functionality to access the LHTTSEngine and the TTSControlModuleDB object, which
provides access to the database.

3.18.1.1.16 TTSControlModuleDB (Class)

This class is a database accessor class used to store and retrieve audio clip information.

3.18.1.1.17 TTSControlModuleProperties (Class)

This class represents the system properties specific to the TTS Control Module.

3.18.1.1.18 TTSTextMessageInfo (Class)

This struct specifies the text message information required to process text to speech
converter request, the call back object to pass the results back and the type of command
requested.

3.18.1.1.19 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.18.1.1.20 TTSConverterImpl (Class)

This is the implementation of the TTSConverter interface, which provides the functionality
to convert text to speech for the CHART2 system.

3.18.1.1.21 TTSMessageQueue (Class)

This class provides the functionality to retrieve messages from the queue and process them
by either retrieving the audio clip data using the FileCacheManager object if available or by
converting the text messages to speech using the TTSServer object. For text messages not
already converted and available in the cache, this class maintains two queues of messages to
be converted into speech, one for message requests from the system and another for the
users. The messages in system message queue get a higher priority over messages in user
message queue. All the messages of a particular queue are processed in a First In First Out
fashion. The audio data produced from conversion or retrieved from the cache is passed
back to the client via the AudioPushConsumer object using the AudioPushThreadManager
object.

R1B2 Servers Detailed Design Rev. 0 3-296 04/17/01

3.18.1.1.22 TTSServer (Class)

This class provides the functionality to access and control the TTS Engine from the
CHART2 system. It provides the functionality to start, stop and change the configuration of
the TTS Engine. It also provides a method to convert a text message to speech.

3.18.1.1.23 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-297 04/17/01

3.18.2 Sequence Diagrams

3.18.2.1 TTSControlModule:AddMessageToQueue (Sequence Diagram)

This diagram shows how a TTSConverter request is added to the message queue. First, the
TTSMessageQueue queries the FileCacheManager to check if an already converted audio
clip exists for the text message of the desired audio format. The FileCacheManager looks in
the TreeMap of the desired audio format for the audio clip using the text message as the
key. The TreeMap returns the audio clip file information, if the audio clip already exists.
Otherwise, it returns a null. If the audio clip was not found, the message is queued in the
proper queue depending upon the priority and the request returns (see
ProcessQueuedMessages sequence digram for details about how the queued messages are
processed). If the audio clip is found, the last used timestamp in the file cache information
is updated and the audio data is pushed back to caller using the AudioPushConsumer object
passed with the request (see PushAudioClipInformation for details about how audio clip
data are passed back to the client).

[if message
added to queue]

notify

[if clip found]
pushAudioClipInfo

[if the key is not found]
null

[if audio clip found]
FileCacheInfo

[if audio clip not found]
null

m_systemMessageQueue m_userMessageQueue

[if audio clip not found
&

TTSPriority = SYSTEM]
add

[if audio clip not found
&

TTSPriority = USER]
add

TTSControlModuleDB

This updates the
FileCacheInfo

[if audio clip found]
put

TTSMessageQueue
TTSConverterImpl

FileCacheManager TreeMap

addMessage

getFileCacheInfo

get

[if the key exists]
FileCacheInfo

Update last used
time stamp in
FileCacheInfo

updateFileCacheInfo

Figure 190. TTSControlModule:AddMessageToQueue (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-298 04/17/01

3.18.2.2 TTSControlModule:CleanupFileCache (Sequence Diagram)

This diagram shows how the FileCacheManager thread deletes the old audio clip files when
the cache limit is exceeded.

FilecacheInfo

FileCacheManager

create

TreeMap

FileCacheManager

This deletes the file from
the file system.

TTScontrolModuleDB

delete

FileCacheManager

For file info sorted
by last used time
stamp

cleanupCachedFiles

"Update current
cache size"

m_lastUsedFileCacheList FileCacheInfo Iterator

File

delete

values().iterator()

Iterator

[while Current Cache Size >
Max Allowed cache Size]

next

create(m_fileName)

delete

m_format

[if audioFormat
for the TreeMap = m_format]

remove(m_text)

deleteFileCacheInfo

m_fileName

m_text

Figure 191. TTSControlModule:CleanupFileCache (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-299 04/17/01

3.18.2.3 TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

This sequence diagram shows how a convert text to speech request is processed. The
message is added to the TTSMessageQueue and audio clip information will be pushed back
using the AudioPushComsumer object passed through this call. See
ProcessQueuedMessages and HARUtility.PushAudio sequence diagrams for details about
how the messages are processed and the data is pushed back.

"Replace <MAE> Tag"

ORB

TTSConverterImpl

convertTextToSpeech

TTSMessageQueue

addMessage

Message queue processes the
request and returns the audio data
asynchronously. See
AddMessageToQueue and
ProcessQueuedMessages
sequence diagram for details about
the order in which the messages
are converted.

Figure 192. TTSControlModule:ConvertTextToSpeech (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-300 04/17/01

3.18.2.4 TTSControlModule:CreateFileCacheInfo (Sequence Diagram)

This diagram shows how the FileCacheManager creates a FileCacheInfo object, which
stores the text message and audio clip file information for future use. A file object is created
from the given file name and is passed to AudioSystem class to get the AudioInputStream
object, which contains the audio format information and the actual data. The length of the
audio message and the size of the audio file are calculated using the audio format
properties. The AudioDataFormat object is created and a FileCacheInfo object is created
using the various data available. Finally, the FileCacheInfo object is added to the TreeMap
containing others clip information of similar audio format and the FileCacheInfo object is
returned.

FileCacheManager

AudioDataFormat

TTSMessageQueue

File

AudioSystem AudioInputStream TreeMap TTSControlModuleDBAudioFormat

Note:
Length of audio clip =
number of frames / frame rate.

Size of the audio clip =
frame length * frame size

createFileCacheInfo

create

create

getAudioFormat

getAudioInputStream

getFrameLength

getFrameRate

getFrameSize

FileCacheInfocreate

[if treemap does not
exist for the AudioFormat]

create

[if TreeMap for
the AudioFormat]

put

insertFileCacheInfo

"Update current
cache size"

if current cache size >
max cache size allowed]

cleanupCachedFiles

Figure 193. TTSControlModule:CreateFileCacheInfo (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-301 04/17/01

3.18.2.5 TTSControlModule:GetSupportedFormats (Sequence Diagram)

This diagram shows how to retrieve a list of currently supported audio formats from the
TTS Engine.

create

TTSConverterImpl RealSpeakServer

LHTTSEngine

getSupportedFormats

GetSupportedAudioFormats

ConfigTotal

[* for each Config]

ConfigIndex

ConfigFormat

AudioDataFormatList

AudioDataFormatList

ORB

AudioDataFormat

Figure 194. TTSControlModule:GetSupportedFormats (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-302 04/17/01

3.18.2.6 TTSControlModule:Initialize (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the
TTSControlModule is initialized. Upon creation, the TTSControlModule creates a
TTSControlServiceProperties object, which provides the user defined system properties to
the rest of the objects in the TTSControlModule. A TTSControlDB object is created to
provide access to the database for TTSControlModule. A TTSServer object is created to
control and provide access to the TTS engine. A TTSConverterImpl object is created,
activated with the POA and published in the Trader to provide the capability to convert text
to speech for the rest of the CHART2 system. The TTSConverterImpl object creates a
TTSMessageQueue thread, which provides the functionality to queue and prioritize the
TTSConverter requests. The TTSConverterImpl object also creates a FileCacheManager
object, which manages the audio clip file info. The TTSMessageQueue creates an
AudioPushThreadManager object, which contains a pool of AudioPushThreads that can be
used to push audio clip information back to the clients of the TTSConverter. The number of
AudioPushThreads to be created can be configured through the system properties file.

TreeMap[if TreeMap does not exist
for the AudioFormat]

create

[if TreeMap for
the AudioFormat]

put

[* for each
AudioClip]

getFileCacheInfo

AudioPushThread

Initialize

create

[* for each
AudioPushThread]

registerObject(TTSConverterImpl)

TTSMessageQueue

FileCacheInfo[]

getAudioFileDirLocation

getAudioDataFormats

TTSControlModuleDB

[can't read properties]
failure

create

CHART2
Application Service

initialize

TTSControl
ModuleProperties

create

getDefaultProperties

getProperties

create

TTSServercreate

TTSConverterImpl

TTSControlModule

AudioPushThreadManager

ServiceApplication

getPOA

getDBConnectionManager

getVoiceType

POA

FileCacheManagercreate

create

create

getMaxCacheSize

getAudioPushThreadPoolSize

activate_object(TTSConverterImpl)

Figure 195. TTSControlModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-303 04/17/01

3.18.2.7 TTSControlModule:GetVoiceLength (Sequence Diagram)

This sequence diagram shows how a request to get audio message length is processed. The
message is added to the TTSMessageQueue and audio clip information will be pushed back
using the AudioPushComsumer object passed through this call. See
ProcessQueuedMessages sequence diagrams for details about how the messages are
processed and the data is pushed back.

ORB

addMessage

"Replace <MAE> Tag"

TTSMessageQueueTTSConverterImpl

getVoiceLength
Message queue processes the request and
returns the voice properties asynchronously.
See ProcessQueuedMessages sequence
diagram for details about how the voicelength
is pushed. Also, note that this request is
added to the user message queue which has a
lower priority than system message queue.

Figure 196. TTSControlModule:GetVoiceLength (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-304 04/17/01

3.18.2.8 TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

This diagram shows how TTSMessageQueue thread processes the queued messages. The
thread continuously looks for messages added to System Message Queue and User Message
Queue. At any time, messages queued in the System Message Queue have a higher priority
over the messages queued in the User Message Queue. Once a message is retrieved from
the queue, a check is made to see if the same text message with the desired audio format has
been converted before. If the audio clip file is found, the audio data is pushed back to client
using the AudioPushConsumer object passed with the request. If a pre-converted clip is not
available, the thread requests the TTSServer to convert the text message to speech. If the
TTS engine fails to convert the message, the consumer is notified. If the message is
converted successfully, the audio clip information is stored in the FileCacheManager for
future use and the audio properties are pushed to the client. See PushAudioClipInfo
sequence diagram for details about how the audio clip information is pushed.

R1B2 Servers Detailed Design Rev. 0 3-305 04/17/01

[if no messages in queue]
wait

See PushAudioProperties
sequence diagram for details.

get

[if the key exists]
FileCacheInfo

[if the key is not found]
null

TreeMap

[if message converted]
pushAudioClipInfo

FileCacheInfo

See CreateFileCacheInfo
sequence diagram for details.

This looks in the TreeMap
corresponding to the audio
format desired to check if there
is a audio clip converted before
for the text message. If found,
the file info is returned.

AudioPush
ThreadManager

See PushAudioProperties
sequence diagram for details.

getFileCacheInfo

Update last used
timestamp and put the
new file info.

[if clip exists]
FileCacheInfo

[if clip exists]
put

[if clip does not exist]
null

[TTSEngine error]
pushFailure

[if clip exists]
updateFileCacheInfo

[if clip exists]
pushAudioClipInfo

[if System Message Queue not empty]
Get Message From

System Message Queue

[if System Message Queue empty]
Get Message From

User Message Queue

FileCache
Manager

[if clip does not exist]
ConvertTextToMessage

This sets the engine
to produce audio of
desired format

ConfigIndex

Say

[TTSEngine error]
failure

success

[if message converted]
createFileCacheInfo

TTSConverterImpl

RealSpeakServer
LHTTSEngine

TTSMessageQueue

start

[while not shutdown]

AudioPush
Consumer

TTSControl
ModuleDB

Figure 197. TTSControlModule:ProcessQueuedMessages (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-306 04/17/01

3.18.2.9 TTSControlModule:PushAudioClipInformation (Sequence Diagram)

This diagram shows how the audio clip information is pushed back to the caller of a
TTSConverter request. If the request is a get voice length command, the audio clip
properties are pushed to client using the AudioPushConsumer passed with the request. If
the request is for converted audio data, a File object is created to access the audio to retrieve
the audio data. An AudioInputStream object is retrieved using the AudioSytem class. The
input stream along with the AudioPushConsumer is passed to the
AudioPushThreadManager for pushing the audio data. See HARUtility.PushAudio for
details about how the audio data is pushed.

TTSMessageQueue

TTSMessageQueue

AudioPushConsumer AudioPushThreadManager

[if cmd = GET_VOICE_LENGTH_CMD]
pushAudioProperties

[if cmd = CONVERT_TTS_CMD]
pushAudio

See HARUtility.PushAudio for
details about the the audio data
are pushed to the caller.

File

AudioSystem

[if cmd = GET_VOICE_LENGTH_CMD]

if cmd = CONVERT_TTS_CMD]
create

if cmd = CONVERT_TTS_CMD]
getAudioInputStream

pushAudioClipInfo

Figure 198. TTSControlModule:PushAudioClipInformation (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-307 04/17/01

3.18.2.10 TTSControlModule:Shutdown (Sequence Diagram)

This diagram shows the sequence of operations that takes place when the
TTSControlModule is shutdown. The TTSConverterImpl object is deactivated and
shutdown. The TTSConverterImpl object in turn shuts down the TTSMessageQueue thread,
which causes to shutdown the AudioPushThreadManager thread and AudioPushThreads.
The TTSServer object is also shutdown and the TTSControlDB object is destroyed.

LHTTSEngine

Stop

shutdown

delete

CHART2
Application Service

TTSMessageQueue

shutdown
[* for each Thread]

shutdown

TTSControlModule TTSServer TTSConverterImpl

shutdown

deactivate_object(TTSConverterImpl)

shutdown

Shutdown

shutdown

FileCache
Manager POA

AudioPush
ThreadManager AudioPushThreadTTSControlModuleDB

Figure 199. TTSControlModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-308 04/17/01

3.19 UserManagementModule

3.19.1 Classes

3.19.1.1 UserManagementModuleClasses (Class Diagram)

This class diagram shows classes that support user management in the CHART II system.
The purpose of this module is to serve the object implementing the UserManager interface
and to serve the objects implementing the Profile interface.

*1

ProfileImpl

Profile

UserManagementDB

1

1

CosTrading.Lookup

1

1

UserManagementModule

CosTrading.Register

1

1

UserManagerImpl
1

ServiceApplication

1

1

1

UserManager

ServiceApplicationModule

setProfileProperties(AccessToken, ProfilePropertyList):void
deleteProfileProperty(AccessToken,ProfileProperties):void
getProfileProperties():ProfilePropertyList

destroy

getUsers
getRoles
getUser
getUserRoles
getUserPassword
setUserPassword
createRole
deleteRole
setRoleFunctionalRights
getRoleFunctionalRights
createUser
deleteUser
grantRole
revokeRole
setUserPassword
setUserRoles
getUserProfile
deleteUserProfile
getUserProfileProperties
setUserProfileProperties
deleteProfileProperty
getSystemProfile
getSystemProfileProperties
setSystemProfileProperties

DBConnectionManager m_db;

createUser(AccessToken token,UserName,Password):void
deleteUser(AccessToken,UserName):void
getUsers(AccessToken):UserList
getRoles(AccessToken):RoleList
getUserRoles(AccessToken,UserName):RoleList
getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList
setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void
ping():void
getSystemProfile():Profile
getUserProfile(AccessToken,UserName):Profile

UserManagerImpl(UserManagementDatabase db, CosTrading.Register traderReg, CosTrading.Lookup traderLookup)

m_database

UserManagementModule()

m_application

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

Figure 200. UserManagementModuleClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-309 04/17/01

3.19.1.1.1 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.19.1.1.2 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.19.1.1.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART II system behaves or presents information to a user.

3.19.1.1.4 ProfileImpl (Class)

This class is the specific implementation of a Profile interface that will be served by the
User Management Service. As such, it contains the profile properties and provides methods
to get, add and delete the properties.

3.19.1.1.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.19.1.1.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.19.1.1.7 UserManagementDB (Class)

The UserManagementDB Class provides methods used to access and modify User
Managment data in the database. This class uses a Database object to retrieve a connection
to the database for its exclusive use during a method call.

R1B2 Servers Detailed Design Rev. 0 3-310 04/17/01

3.19.1.1.8 UserManagementModule (Class)

This module creates, publishes and deletes the object that implements the UserManager
interface for user configuration and manipulation.

3.19.1.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

3.19.1.1.10 UserManagerImpl (Class)

This class is the specific implementation of a UserManager interface that will be served by
the User Management Service. As such, it provides implementations of each of the methods
in the UserManger interface.

R1B2 Servers Detailed Design Rev. 0 3-311 04/17/01

3.19.2 Sequence Diagrams

3.19.2.1 UserManagementModule:AddUser (Sequence Diagram)

A user with the proper functional rights may add a new user to the system. The user will be
added to the user database provided the password and username specified for the new user
are valid.

createUserProfile

[invalid password]
InvalidPassword

InvalidUserName[invalid user name]
InvalidUserName

Success

OperationsLog

[no rights]
log

[no rights]
AccessDenied createUser

InvalidPassword

log

ORB
UserManagerImpl TokenManipulator UserManagementDB

createUser

checkAccess

[database error]
CHART2Exception[database error]

CHART2Exception

Figure 201. UserManagementModule:AddUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-312 04/17/01

3.19.2.2 UserManagementModule:ChangeUserPassword (Sequence Diagram)

A user may change his/her own password. The system will verify that the invoking user is
actually the user whose password is being changed and will require the user to pass his/her
current password that must match the password in the user database.

[database error]
CHART2Exception[database error]

CHART2Exception

UserManagementDB
ORB

UserManagerImpl

changeUserPassword

checkAccess

[no rights]
AccessDenied

getUserPassword
[unknown user]
UnknownUser

[incorrect password]
IncorrectPassword

Success

Thrown if the
invoking user is
not the user
whose password
is being changed

Thrown if the
old password
passed does not
match the users
password in the
database

UnknownUser

setUserPassword
InvalidPassword

OperationsLog

IncorrectPassword

log

[no rights]
log

[invalid password]
InvalidPassword

TokenManipulator

Figure 202. UserManagementModule:ChangeUserPassword (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-313 04/17/01

3.19.2.3 UserManagementModule:CreateRole (Sequence Diagram)

A user with the proper functional rights may create a new role in the user database. The
system will verify that the role is not already defined before creating it.

ORB
UserManagerImpl TokenManipulator UserManagementDB

Success

createRole

log

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[no rights]
log

[no rights]
AccessDenied

createRole
DuplicateRole[duplicate role]

DuplicateRole

checkAccess

Figure 203. UserManagementModule:CreateRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-314 04/17/01

3.19.2.4 UserManagementModule:DeleteProfileProperty (Sequence Diagram)

A user with proper functional rights can delete a profile property from the profile.

If the Profile being modified is
the System Profile check to see
if the user has 'ConfigureSystemProfile'
functional right. Otherwise, the profile
should belong to the user modifying it
and the user should have 'ConfigureSelf'
functional right.

UserManagementDB

Success

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

deleteProfileProperty

checkAccess
[no rights]

log[no rights]
AccessDenied

deleteProfileProperty

log

ORB

Profile TokenManipulator

Figure 204. UserManagementModule:DeleteProfileProperty (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-315 04/17/01

3.19.2.5 UserManagementModule:DeleteRole (Sequence Diagram)

A user with the proper functional rights may delete a role from the user database. The
system will verify that the role is not currently assigned to any users before deleting it.

checkAccess

[database error]
CHART2Exception][database error]

CHART2Exception

ORB
UserManagerImpl TokenManipulator UserManagementDB

deleteRole

OperationsLog

[no rights]
AccessDenied

deleteRole

RoleInUse[role in use]
RoleInUse InvalidRole

[no rights]
log

log

[invalid role]
InvalidRole

Success

Figure 205. UserManagementModule:DeleteRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-316 04/17/01

3.19.2.6 UserManagementModule:DeleteUser (Sequence Diagram)

A user with the proper functional rights may delete a user from the user database. The
system will check if the user who is being deleted is currently logged in. If the user is
logged in, the administrator will be notified of this fact and will not be able to delete the
user. Note that the administrator may use the system to force the user to logout and then
delete the user. The check to see if the user is currently logged in is a warning to the
administrator and, due to its use of the trader, cannot be guaranteed to successfully check all
logins. If the user is deleted from the database while logged in, however, it will not affect
his/her current session. He/she will simply not be able to use the system subsequent to
logging out.

Profile

[if User Profile exists]
delete

deleteUserProfile

log

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[no rights]
log

UserManagerImpl

TokenManipulator

UserManagementDB

Success

UnknownUser
[unknown user]
UnknownUser

deleteUser

delete

Check if the user
is logged in.

checkAccess

[no rights]
AccessDenied

deleteUser

CosTrading.Lookup

Get the published
operations centers

OperationsCenter
ORB

create

UserLoginSession

query

[for each Operations Center]
isUserLoggedIn

[user logged in]
UserLoggedIn

Figure 206. UserManagementModule:DeleteUser (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-317 04/17/01

3.19.2.7 UserManagementModule:GetSystemProfile (Sequence Diagram)

A user can get the system profile that is common to all the users in the CHART2 system.

[unexpected error]
CHART2Exception

ORB

UserManagerImpl

getSystemProfile

Profile

Figure 207. UserManagementModule:GetSystemProfile (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-318 04/17/01

3.19.2.8 UserManagementModule:GetUserProfile (Sequence Diagram)

A user with proper functional rights can get his or her own Profile.

[unexpected database error]
CHART2Exception[database error]

CHART2Exception

[invalid username]
InvalidUserName

[user does not exist]
UnknownUser[user does not exist]

UnknownUser

ORB

UserManagerImpl TokenManipulator UserManagerDB POA OperationsLog

Profile

getUserProfile

checkAccess
[no rights]

log[no rights]
AccessDenied

getUserProfileProperties

create

activate_object(Profile)

[if User Profile exists]
Profile

ProfilePropertyList

Profile

Figure 208. UserManagementModule:GetUserProfile (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-319 04/17/01

3.19.2.9 UserManagementModule:GrantRole (Sequence Diagram)

A user with the proper functional rights may grant a role to a user. The user will not get
his/her new functional rights until he/she logs off and logs back on.

[database error]
CHART2Exception

UserManagerImpl TokenManipulator

[database error]
CHART2Exception

OperationsLog

[no rights]
log

log

UserManagementDB

grantRole

checkAccess

[no rights]
AccessDenied

grantRole

DuplicateRole[duplicate role]
DuplicateRole InvalidRole
[invalid role]
InvalidRole

Success

UnknownUser
[unknown user]
UnknownUser

ORB

Figure 209. UserManagementModule:GrantRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-320 04/17/01

3.19.2.10 UserManagementModule:Initialize (Sequence Diagram)

Upon initialization the user manager module will create the objects which it is responsible
for serving, activates them using the POA, and exports them to the CORBA trading service.
After initialization this module is available for use by clients.

Profile

getSystemProfileProperties

activate_object(Profile)

create

getPOA

getDBConnectionManager

getTradingLookup

getTradingRegister

create

Store Offer ID

activate_object(UserManagerImpl)

initialize

create

export(UserManagerImpl)

Store the offer so
we can withdraw it later.

POA

UserManagementDB

CosTrading.RegisterServiceApplication

success

UserManagerImpl

UserManagementModule

Service Application

Figure 210. UserManagementModule:Initialize (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-321 04/17/01

3.19.2.11 UserManagementModule:ModifyRole (Sequence Diagram)

A user with the proper functional rights may change the functional rights that belong to a
role. This will have the effect of changing the actions that users who have been granted that
role may perform. However, these changes will not be recognized until the user logs out
and logs back in.

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[no rights]
log

log

[no rights]
AccessDenied

setRoleFunctionalRights

InvalidFunctionalRight[invalid funtional right]
InvalidFunctionalRight

UserManagementDB

setRoleFunctionalRights
checkAccess

InvalidRole[invalid role]
InvalidRole

Success

ORB
UserManagerImpl TokenManipulator

Figure 211. UserManagementModule:ModifyRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-322 04/17/01

3.19.2.12 UserManagementModule:RevokeRole (Sequence Diagram)

A user with the proper functional rights may revoke a role that has previously been granted
to a user. This action will result in the user having a reduced set of functional rights, and
thus reduce the number of system activities the user may perform. The user will get his/her
new list of functional rights the next time he/she logs in.

[database error]
CHART2Exception[database error]

CHART2Exception

[AccessDenied]
log

log

revokeRole

ORB
UserManagerImpl TokenManipulator UserManagementDB

Success

UnknownUser
[unknown user]
UnknownUser

checkAccess

[access denied]
AccessDenied

revokeRole

InvalidRole[invalid role]
InvalidRole

OperationsLog

Figure 212. UserManagementModule:RevokeRole (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-323 04/17/01

3.19.2.13 UserManagementModule:SetProfileProperties (Sequence Diagram)

A user with the proper functional rights can store a set of properties in a profile.

Success

ORB

Profile UserManagementDBTokenManipulator OperationsLog

checkAccess
[no rights]

log[no rights]
AccessDenied

log

[database error]
CHART2Exception

[database error]
CHART2Exception

setProfileProperties

If the Profile being modified is
the System Profile check to see
if the user has 'ConfigureSystemProfile'
functional right. Otherwise, the profile
should belong to the user modifying it
and the user should have 'ConfigureSelf'
functional right.

setProfileProperties

Figure 213. UserManagementModule:SetProfileProperties (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-324 04/17/01

3.19.2.14 UserManagementModule:SetRoleFunctionalRights (Sequence Diagram)

A user with proper functional rights may set the list of Functional Rights belonging to a
role. Note that at the completion of this sequence the role will only have the rights that were
set by this call.

log

[functional right not in functional right table]
InvalidFunctionalRight[invalid functional right]

InvalidFunctionalRight

ORB

UserManagerImpl TokenManipulator UserManagementDB OperationsLog

setRoleFunctionalRights

checkAccess
[no rights]

log[no rights]
AccessDenied

setRoleFunctionalRights

[database error]
CHART2Exception

[role does not exist]
InvalidRole[invalid role]

InvalidRole

[unexpected database error]
CHART2Exception

success

Figure 214. UserManagementModule:SetRoleFunctionalRights

(Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-325 04/17/01

3.19.2.15 UserManagementModule:SetUserPassword (Sequence Diagram)

A user with the proper functional rights may set the password that a user must specify in
order to log into the system. This action does not require that the administrator be able to
supply the users current password and, therefore, is restricted to administrative users. This
function is included to deal with situations where users forget their system password.

[invalid password]
InvalidPassword

UserManagementDB
ORB

UserManagerImpl TokenManipulator

setUserPassword

checkAccess

[no rights]
AccessDenied

setUserPassword
[unknown user]
UnknownUser

Success

[database error]
CHART2Exception[database error]

CHART2Exception

OperationsLog

[no rights]
log

log

UnknownUser

InvalidPassword

Figure 215. UserManagementModule:SetUserPassword (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-326 04/17/01

3.19.2.16 UserManagementModule:SetUserRoles (Sequence Diagram)

A user with the proper functional rights may assign set of roles to a user. The user will not
get his/her new functional rights until he/she logs off and logs back on. Note that at the end
of this operation the user will have only the roles assigned by this operation.

Success

UnknownUser[unknown user]
UnknownUser

setUserRoles

checkAccess

[no rights]
AccessDenied

setUsertRoles

[database error]
CHART2Exception[database error]

CHART2Exception

[no rights]
log

log

InvalidRole[invalid role]
InvalidRole

OperationsLog
ORB

UserManagerImpl TokenManipulator UserManagementDB

Figure 216. UserManagementModule:SetUserRoles (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-327 04/17/01

3.19.2.17 UserManagementModule:Shutdown (Sequence Diagram)

The user management module will withdraw the user management object from the trader,
deactivates it from the POA and delete it.

Profile UserManagementDB

delete

getTradingLookup

getPOA

shutdown

success

ServiceApplication POA UserManagerImplUserManagementModule

Service Application

deactivate(UserManagerImpl)

CosTrading.Register

withdraw(UserManagerImpl)

delete

["system profile"]
deactivate(Profile)

delete

Figure 217. UserManagementModule:Shutdown (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-328 04/17/01

3.20 Utility

3.20.1 Classes

3.20.1.1 UtilityClasses (Class Diagram)

DBUtility

java.lang.Thread

RecurringTimer

Log

MultiFormatter

DBConnectionManager

Identifier

PushEventSupplier

OpLogQueue

UniquelyIdentifiable

java.lang.Runnable

java.util.Properties

EventConsumerGroup

CosEventChannelAdmin.EventChannel

ServiceApplicationProperties

ServiceApplication

DefaultServiceApplication

CommandQueue

TokenManipulator

MultiConverter

FunctionalRightType

*

1*

logs message
using

11

1

1

*1

12

*

1

1..*

1

1

1

1

*

1

1

1 1

*1

2

1

*

1

POA

IdentifierGenerator

BucketSet

OpLogMessage

PushEventConsumer

LogFile

OperationsLog

ServiceApplicationModule

1

1

1

1

*

FMS

QueueableCommand

MultiParseListenerIdentifiableLookupTable

EventConsumer

ObjectRemovalListener

CommandStatusWatcher

CorbaUtilities

activate_object(Servant obj)
deactivate_object(object_id)

the_POAManager

createIdentifier()
areIdentifiersEqual()

add(comparable)
remove(comparable)
removeAll()
getElements(int)
size()
isEmpty()

m_comparables

String m_actionDesc
String m_actionType
String m_opCenter
Date m_timeStamp
String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel
m_pushConsumer

log(Object obj, String message, int level)
logStack(Object obj, String message, int level, Throwable th)
setKeepDays(int days)
setLogFileName(String fileName)
getKeepDays()
getLogFileName()
OpenLogFile()
setLogLevel(int level)
getLogLevel()
deleteLogFiles(Date presentTime)

m_logFileName
m_keepDays
m_logFile
m_creationDate
m_defFileName
m_logLevel

OperationsLog(DBConnectionManager db)
log()
flushLog
shutdown

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

addCommand(QueueableCommand cmd)
addCommandOnTop(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

TokenManipulator()
createToken(userName, opCenterID, opCenterName)
optimize(operation, orgFilter)
add(userToken, operation, orgFilter)
add(userToken, operation)
remove(userToken, operation, orgFilter)
remove(userToken, operation)
getOpCenterName(userToken)
getOpCenterID(userToken)
getHostName(userToken)
getUserName(userToken)
checkAccess(userToken, operation, orgFilter)
checkAccess(userToken, operation)
hasRight(userToken, operation, orgFilter)
validateToken(userToken)
calcCheckSum(userToken)
printToken(userToken)
printNybble(nybble)

multiToPlainText(multi)
plainTextToMulti(text, formatter)
parseMulti(multi, listener)

addDMS
removeDMS
blankSign
stopPolling
startPolling
forcedPoll
resetController
setMessage
getMessage
setPollInterval
getPollInterval
setCommLostTimeout
getCommLostTimeout
getAsyncPollingResults

execute()
interrupted()
getCmdStatus():CommandStatus
getToken():byte[]

objectRemoved(Object obj):void;

add(CommandStatus):void
start(long intervalMillis):void
stop():void
waitForCompletion():void

Vector m_cmdStatusList
CommandStatus m_masterStatus
String m_masterStatusText
long m_total
long m_success
long m_failure
long m_undetermined

findAllObjectsOfType(ORB, lookup, type):Object[]

start()
interrupt()
setDaemon(boolean)
run():void

addTimerListener(TimerUpdatable):void
removeTimerListener(TimerUpdatable):void
getIntervalMillis():long
setIntervalMillis(long):void
shutdown():void

-long m_intervalMillis

get():Log;
log()
logStack()

m_instance

plainTextToMulti(text)

getConnection():java.sql.Connection
releaseConnection();
shutdown();

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)
getChannel():EventChannel;
getMaxReconnectInterval(void):int;
setMaxReconnectInterval(int seconds):void;
push(Any data):void;
disconnectPushConsumer(void):void;

OpLogQueue()
put()
flush()
getFirstMessage()
removeFirstMessage()

m_logQueueTime

getID()
getName()

run()

getProperty()
setProperty()

add(consumer)
setInterval()
remove(consumer)
-hasConsumer(consumer)
-verifyConnections()

for_consumers()
for_suppliers()
destroy()

ServiceApplicationProperties(
String propertiesFilename)
getProperties()
getDefaultProperties()
getThreadModel():int
getThreadPoolSize():int
getDatabaseConnectString():String
getDatabaseUserName():String
getDatabasePassword():String
getModuleNames():String[]
getNetConnectionSite():String

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

escapeSingleQuotes(string):string
executeSQLStatement(conn, query, string, int):void

messageTxt(text)
lineJustification(justify)
newLine(pixelSkip)
newPage()
pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
parseComplete()

put(Identifiable)
find(identifier)
remove(identifier)
elements()
size()

verifyConnection()
connect()
isEqual(consumer)

Figure 218. UtilityClasses (Class Diagram)

R1B2 Servers Detailed Design Rev. 0 3-329 04/17/01

3.20.1.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects
added to this collection must be of the same concrete type. Each element in the collection
has an associated counter that tracks how many times this element has been added. It is then
possible to get only the elements which have been added to the collection n times where n
is a positive integer value. This class is very useful for creating GUI menu’s for multiple
objects as it allows all objects to insert their menu items and then allows the user to get only
those items that all objects inserted.

3.20.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.20.1.1.3 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.20.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.20.1.1.5 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server
and GUI for CORBA Trader service transactions.

3.20.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two separate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks

R1B2 Servers Detailed Design Rev. 0 3-330 04/17/01

the inuseList to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.20.1.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.20.1.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need
to be available, provide database connectivity, etc. The properties file also contains the
class names of service modules that should be served by the service application. During
startup, the DefaultServiceApplication instantiates the service application module classes
listed in the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer ids for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.20.1.1.9 EventConsumer (Class)

This interface provides the methods that any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

3.20.1.1.10 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependent to
receive events.

3.20.1.1.11 FMS (Class)

This class represents the CHART II system’s interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually
calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

R1B2 Servers Detailed Design Rev. 0 3-331 04/17/01

3.20.1.1.12 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the
CHART2 system. It contains a static member for each possible functional right.

3.20.1.1.13 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.20.1.1.14 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.20.1.1.15 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.20.1.1.16 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.20.1.1.17 java.lang.Thread (Class)

This class represents a java thread of execution.

3.20.1.1.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.20.1.1.19 Log (Class)

Singleton log object to enable applications to easily create and utilize a LogFile object for
system trace messages.

3.20.1.1.20 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

R1B2 Servers Detailed Design Rev. 0 3-332 04/17/01

3.20.1.1.21 MultiConverter (Class)

This class provides methods that perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and
inform a MultiParseListener of elements found in the message.

3.20.1.1.22 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULTI formatted messages.

3.20.1.1.23 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an
implementing class to be notified as parsing of a MULTI message occurs. An exemplary
use of a MultiParseListener would be the MessageView window that will need to have the
MULTI message parsed in order to display it as a pixmap.

3.20.1.1.24 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed
from the system. This is typically used by objects that store a collection of other objects,
such as a factory, to allow them to remove objects from their collection when the object is
to be removed from the system.

3.20.1.1.25 OperationsLog (Class)

This class provides the functionality to add a log entry to the CHART II operations log. At
the time of instantiation of this class, it creates a queue for log entries. When a user of this
class provides a message to be logged, it creates a time-stamped OpLogMessage object and
adds this object to the OpLogQueue. Once queued, the messages are written to the database
by the queue driver thread in the order they were queued.

3.20.1.1.26 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system’s Operations Log.
Messages added to the queue can be removed in FIFO order.

3.20.1.1.27 OpLogMessage (Class)

This class holds data for a message to be stored in the system’s Operations Log.

3.20.1.1.28 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

R1B2 Servers Detailed Design Rev. 0 3-333 04/17/01

3.20.1.1.29 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer
implementation to an event channel, and maintaining that connection. When the
verifyConnection method is called, this object will determine if the channel has been lost
and will attempt to re-connect to the channel if it has.

3.20.1.1.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.20.1.1.31 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.20.1.1.32 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been
registered on a specified period.

3.20.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
CHARTII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

R1B2 Servers Detailed Design Rev. 0 3-334 04/17/01

3.20.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.20.1.1.35 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the
necessary properties from the java properties configuration file. It also provides a default
properties file which can be retrieved by anyone holding a ServiceApplication interface
reference. This gives each installed service module the opportunity to load default values
before retrieving property values from the properties file.

3.20.1.1.36 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It
encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights which are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

3.20.1.1.37 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 Servers Detailed Design Rev. 0 3-335 04/17/01

1.1.1.1 UtilityClasses2 (Class Diagram)

1

LogEntryCache

ValueType

Constructor sets m_refCount to 1.
Additional references recorded by LogEntryCache
with incdRefCount() and decrRefCount()

CachedLogEntry

1* *1

1

1

*1
1*

*

ValueType

LogFilter DatabaseLogger
LogEntry

LogIterator

LogIteratorImpl

LogEntryCache deletes a CachedLogEntry from
hashtable when its refCount hits 0.

m_keys is an ordered array of
slots in the cache for the LogEntries
which match the filter. Each key
is used to extract the appropriate
LogEntry from the LogEntryCache.
m_nextEntry indexes into array
of m_entrySlots, pointing to the
next entry to extract.

factory createLogFilter() : LogFilter

TimeStamp m_startDate
TimeStamp m_endDate
Identifier m_eventID
string m_opCenterName
string m_containsText

DatabaseLogger(tableName)
addEntry(logEntry) : void
checlExpiredEntries() : void
getEntries(filter, maxCount) : LogIterator
shutdown() : void

equals() : boolean
factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

TimeStamp m_timestamp
Identifier m_eventID
string m_text
string m_author
string m_opCenterName

getMoreEntries(long maxCount) : LogEntryList
destroy():void

long m_timeOfLastUse

addEntry(LogEntry entry)

Object[] m_keys
int m_nextEntry

addEntry(LogEntry entry) : Object
getEntry (Object key) : LogEntry

java.util.Hashtable hashTable

decrRefCount() : void
equals() : boolean
getEntry() : LogEntry
getRefCount() : int
hashCode() : int
incrRefCount() : void

m_logEntry
m_refCount

Figure 219. UtilityClasses2 (Class Diagram)

3.20.1.1.38 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient
LogEntryCache. The object of this class encapsulates the stored log entry and adds a
reference count.

3.20.1.1.39 DatabaseLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.20.1.1.40 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 Servers Detailed Design Rev. 0 3-336 04/17/01

3.20.1.1.41 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess
of the requestor-specified maximum number of entries to return at one time. The
LogIterator stores references to the LogEntry objects thus cached, and requests additional
objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate
copies of LogEntry objects, and it deletes LogEntry objects when they are no longer
needed.

3.20.1.1.42 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.20.1.1.43 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a LogIterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

3.20.1.1.44 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work
which clients can request via the LogIterator interface. The LogIteratorImpl stores data
relating to cached LogEvents for a single retrieval request, and implements the client
request to get additional clumps of data pertaining to that request.

R1B2 Servers Detailed Design Rev. 0 3-337 04/17/01

3.20.2 Sequence Diagrams

3.20.2.1 DatabaseLogger:getEntries (Sequence Diagram)

First clump of entries is returned, plus an
iterator from which requestor can get more.

Next clump of LogEntry
objects is returned. If maxCount
entries are returned, caller can
call getMoreEntries() again.

LogEntryList

CachedLogEntry

LogEntry

getMoreEntries(maxCount)

create

getEntry(key)

Later, when
ready for more

DatabaseLogger

LogEntryList

LogEntry

LogIteratorImpl

LogEntry

LogEntryCache

CachedLogEntry

Hashtable

Really the
CachedLogEntry,
cast as an Object,
and known only as
a "key" by the
LogIterator

getEntries(maxCount)

create

"Request data
matching filter
from database"

[if no matching data]
LogEntryList (empty)

create

add LogEntry to LogEntryList

[*for each
row returned,

until maxCount
or done]

[if done]
LogEntryList create

create

addEntry(LogEntry)

get()

When LogEntryList comes back with less than maxCount entries, user should call destroy() on the iterator, see
CommLogModule::destroy for details. If user fails to call destroy, iterator will be destroyed by cleanup thread after
a period of disuse.

[if already cached]
incrRefCount

[if not currently cached]
put()

Object

[*for each
row returned,
until no more]

addEntry(LogEntry)

[if not currently cached]
create

This LogEntry is
retrieved

[*maxCount
times, or

until no more]

LogEntryList

decrRefCount()
if refCount ==0]

remove()

LogEntryList &
LogIterator

CachedLogEntry

getEntry()

add LogEntry
to LogEntryList

Figure 220. DatabaseLogger:getEntries (Sequence Diagram)

R1B2 Servers Detailed Design Rev. 0 3-338 04/17/01

3.20.2.2 DictionaryWrapper:checkForBannedWords (Sequence Diagram)

This diagram shows processing performed by the DictionaryWrapper that is representative
of all methods that it duplicates in the Dictionary interface. When a method is called that is
to be delegated to a system dictionary, the DictionaryWrapper first attempts to use the
dictionary references (if any) that it has already discovered during a previous method
invocation. If no references exist (this is true for the first usage of the wrapper) or if all
existing references return CORBA failures when used, the DictionaryWrapper queries the
trader for all Dictionaries in the system and then attempts to use each until a “live”
reference is found or all of the newly discovered references return CORBA failures when
used.

A timestamp is used to prevent a flurry of trader queries when no Dictionary objects are
available. Prior to doing a trader query to (re)discover dictionaries, the DictionaryWrapper
makes sure that at least a minimum amount of time has elapsed since the last time it tried to
find a dictionary. The use of synchronization around the discovery process also helps to
prevent a flood of trader queries.

R1B2 Servers Detailed Design Rev. 0 3-339 04/17/01

"end synchronization"

[CORBA exception caught]
"remove reference from

vector"

[Dictionary.checkForBannedWords
did not throw a CORBA

exception]
results

checkForBannedWords

[current time minus
discovery timestamp

less than min discovery period]
CHART2Exception

findAllObjectsOfType

checkForBannedWords

[*while more refs in vector
and checkForBannedWords

has thrown a CORBA
exception]

"Narrow each object
returned to a Dictionary

and store in vector"

DMSMessage CorbaUtilities Dictionary

validateMessageContents

get()

checkForBannedWords

m_lock

[Dictionary.checkForBannedWords
did not throw a CORBA

exception]
results

"set discovery timestamp"

[CORBA exception caught]
"remove reference from

vector"

DictionaryWrapper

If Dictionary.checkForBannedWords is
able to be called, the results are returned
to the user and this method is finished.
Otherwise, if the minimum time has elapsed
since the last time it tried, the method will
try to find a different DictionaryRef to use.

[All refs threw CORBA
exception]

CHART2Exception

synchronized

[*while more refs in vector
and checkForBannedWords

has thrown a CORBA
exception]

DMS

Figure 221. DictionaryWrapper:checkForBannedWords (Sequence Diagram)

R1B2 Servers Detailed Design AC-1 04/17/01

Acronyms

The following acronyms appear throughout this document:

API Application Program Interface

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DMS Dynamic Message Sign

DTMF Dual Tone Multiple Frequency

EORS Emergency Operations Reporting System

FMS Field Management Station

GUI Graphical User Interface

HAR Highway Advisory Radio

IDL Interface Definition Language

ITS Intelligent Transportation Systems

LATA Local Access and Transport Areas

NTCIP National Transportation Communications for ITS Protocol

OMG Object Management Group

ORB Object Request Broker

POA Portable Object Adapter

R1B2 Release 1, Build 2 of the CHART II System

TTS Text To Speech

UML Unified Modeling Language

R1B2 Servers Detailed Design REF-1 04/17/01

References
CHART II Release 4 Interim BAA Report, document number M361-BA-004R0, Computer
Sciences Corporation and PB Farradyne.

CHART II System Requirements Specification Release 1 Build 2, document number M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation
and PB Farradyne.

FMS R1B1 High Level Design, document number M303-DS-001R0, Computer Sciences
Corporation and PB Farradyne.

CHART II to Field Management Station (FMS) Interface Control Document (ICD), document
number M361-ID-001R0, Computer Sciences Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

TELE-SPOT 3001 Sign Controller Communications Protocol, document number 750208-040
v2.3, T-S Display Systems Inc., 1995

Functional Specification for FP9500ND – MDDOT Display Control System, document number
A316111-080 Rev. A6, MARK IV Industries Ltd., 1998.

Maintenance Manual for the FP1001 Display Controller, document number 316000-443 Rev. E,
Ferranti-Packard Displays, 1987

FP2001 Display Controller Application Guide, document number A317875-012 Rev. 8, F-P
Electronics, 1991

Engineering Specification - Brick Sign Communications Protocol, Rev. 1, ADDCO Inc., 1999.

PCMS Protocol version 4, document number 32000-150 Rev. 5, Display Solutions, 2000

BSC Protocol Specification (Data Link Protocol Layer), v. 1.3, Fiberoptic Display Systems Inc.,
1996

Sylvia Variable Message Sign, Command Set 9403-1, v. 1.4, Fiberoptic Display Systems Inc.,
1996

R1B2 Servers Detailed Design REF-2 04/17/01

2.5 Mile AM Travelers Information Station Instruction Manual For: Maryland State Highway
Administration, Information Station Specialists.

Technical Practice RC-2A Remote Touch-Tone On/Off Industrial Controller, Viking Electronics
Inc., August 1993.

R1B2 Servers Detailed Design A-1 04/17/01

Appendix A – Functional Rights
This table lists the functional rights that exist in the CHART II system and the operations to
which they grant access.

Functional Right Required Operation Organization

Filterable
Add Comm Log entries No BasicOperations

 Get Comm Log entries No
Add DMS Yes
Remove DMS Yes

ConfigureDMS

Set DMS Configuration Yes
ConfigureDMS or ViewDMSConfig Get DMS Configuration Yes

Add HAR Yes
Add SHAZAM Yes
Remove HAR Yes
Remove SHAZAM Yes
Set HAR Associated with a
Notifier(DMS or SHAZAM)

Yes

Set HAR Configuration Yes
Set HAR Message Notifier(DMS or
SHAZAM) Direction

Yes

ConfigureHAR

Set SHAZAM Configuration Yes
Get HAR Configuration Yes ConfigureHAR or ViewHARConfig

 Get SHAZAM Configuration Yes
Get User Profile No ConfigureSelf

 Set User Password No
Delete Profile Properties No ConfigureSelf, ConfigureSystemProfile

 Set Profile Properties No
Add Traffic Event Log Entry No
Associate Event No
Change Event type No
Check if Congestion Event is a
Recurring event

No

Close Traffic Event No
Override Incident Lane Open
Close Time

No

Override Traffic Event Closure
Time

No

Set Congestion Event as a
Recurring event

No

Set Incident Road Conditions No

ConfigureTrafficEvent

Set Incident Type No

R1B2 Servers Detailed Design A-2 04/17/01

Functional Right Required Operation Organization
Filterable

Set Incident Vehicle Data No
Set Roadway Event lane
configuration

No

Set Traffic Event as Primary event No

Set Traffic Event as Secondary
event

No

Change User Password No
Create Role No
Create User No
Delete Role No
Delete User No
Grant Role No
Revoke Role No
Set Role Functional Rights No

ConfigureUsers

Set User Roles No
Blank DMS Yes
Perform DMS Pixel Test Yes
Perform DMS Test Yes
Poll DMS Yes
Reset DMS Controller Yes

Maintain DMS

Set DMS Message Yes
Blank HAR Yes
Delete HAR Slot Message Yes
Refresh SHAZAM Yes
Reset HAR Yes
Set HAR Message Yes
Set HAR Transmitter Off Yes
Set HAR Transmitter On Yes
Set SHAZAM Beacons Off Yes
Set SHAZAM Beacons On Yes
Setup HAR Yes

MaintainHAR

Store HAR Slot Message Yes
Manage Services Shutdown Service No

Put a device in Maintenance Mode Yes
Put a device Online Yes

ManageDeviceComms

Take a device Offline Yes
Add a list of Approved Words to
Dictionary

No ManageDictionary

Add a list of Banned Words from
Dictionary

No

R1B2 Servers Detailed Design A-3 04/17/01

Functional Right Required Operation Organization
Filterable

Remove a list of Approved Words
from Dictionary

No

Remove a list of Banned Words
from Dictionary

No

Get Approved Words from
Dictionary

No ManageDictionary or ViewDictionary

Get Banned Words from
Dictionary

No

Force Logout No ManageUserLogins
 Force Logout No

Create Message Library No
Create Stored Message No
Remove Library No
Remove Stored Message No
Remove Stored Message No
Set Message associated with
Stored Message

No

Set Message Library Name No

ModifyMessageLibrary

Set Stored Message Data No
Add Plan Item No
Create Plan No
Remove Plan No
Remove Plan Item No
Remove Plan Item No
Set Plan Item Data No
Set Plan Item Name No

ModifyPlans

Set Plan Name No
Change User No Must pass the token of the user

logging out

Logout User No

Add a message to Arbitration
Queue

No

Add Resource Response
Participation

No

Add Response Plan Item No
Execute Response Plan Item No
Execute Traffic Event Response No
Override Organization responded
time

No

Override Resource arrival time No

RespondToTrafficEvent

Override Resource departure time No

R1B2 Servers Detailed Design A-4 04/17/01

Functional Right Required Operation Organization
Filterable

Remove a message from
Arbitration Queue

No

Remove Response Device No
Remove Response Participation No
Remove Response Plan Item No
Set Organization notification. No
Set Organization participation
response to Event

No

Set Resource arrived on scene No
Set Resource departed from
scene

No

Set Response Plan Item data No

Set Response Plan Item
description

No

RespondToTrafficEvent,
ViewTrafficEventData

Get Response Plan Item data No

Activate HAR Message Notice Yes
Deactivate HAR Message Notice Yes

SetHARMessage

Set HAR message and Notifiers Yes
Clear Controlling Operations
Center

Yes

Set Controlling Operations Center Yes

TransferAnySharedResource

Transfer Shared Resources Yes
Get Role Functional Rights No
Get Roles No
Get User Roles No

ViewUserConfig or ConfigureUsers

Get Users No
ViewUserLogins Get Login Sessions No

R1B2 Servers Detailed Design B-1 04/17/01

Appendix B – Glossary

Action Event A Traffic Event related to the disposition of actions in response

to device failures and non-blockage events (e.g. signals, debris,
utility, and signs).

Approved Word A word that is known to the system and has been approved for

use when communicating with the motoring public via a
messaging device. The dictionary will suggest words to the
operator when it encounters a word that has not been previously
approved.

Arbitration Queue A prioritized queue containing messages for display or broadcast

on a traveler information device.

Banned Word A word that may not be used when communicating with the

motoring public via a messaging device such as a HAR or DMS.

Comm Log A collection of information received from any source that

requires no action.

Congestion Event A Traffic Event related to roadway congestion situations.

Congestion Events may be recurring or non-recurring.

CORBA Event A CORBA mechanism using which different CHART2

components exchange information without explicitly knowing
about each other.

CORBA Trader A CORBA service that facilitates object location and discovery.

A server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service.

Data Model An object repository that keeps track of changes to the various

objects in the repository and informs about these changes as they
occur, to observers who are interested in the objects in the
repository. A Data Model identifies the subject in a
Subject/Observer design pattern.

Dictionary

A collection of banned and approved words.

R1B2 Servers Detailed Design B-2 04/17/01

Deployable Resource Any resource that can be deployed to the scene in order to

provide assistance during a traffic event.

DMS A Dynamic Message Sign that can be controlled by one

Operations Center at a time.

DMS Stored Message Item A plan item that is used to set a specific message on a specific

DMS when added to a Traffic Event response plan and activated.

Emergency Operations
Reporting System

A system external to CHART II that (among other things) keeps
track of planned roadway closures and permits.

Factory A CORBA object that is capable of creating other CORBA

objects of a particular type. The newly created object will be
served from the same process as the factory object that creates it.

FMS Field Management Station through which the CHART II system

communicates with the devices in the field.

Functional Right A privilege that gives a user the right to perform a particular

system action or related group of actions. A functional right may
be limited to pertain only to those shared resources owned by a
particular organization or can pertain to the shared resources of
all organizations.

Graphical User Interface Part of a software application that provides a graphical interface

to its user.

GUI Wrapper Object A GUI wrapper object is one that wraps a server object to

provide it with GUI functionality such as menu handling. It also
helps in performance enhancement by caching data locally
thereby avoiding network calls when not necessary.

HAR A Highway Advisory Radio which can be controlled by one

Operations Center at a time.

HAR Message A message which is capable of being stored on a HAR. It is

composed of a message header, body and footer.

HAR Message Clip A message clip is part of a HAR message that could be a header

R1B2 Servers Detailed Design B-3 04/17/01

or body or footer. It can be stored either as a text or in one of the
binary forms (WAV, MP3 etc).

HAR Message Slot A message slot is one of the numbered message stores inside the

HAR device that can be used to store pre-fabricated messages
useful for quick retrieval and playing.

Incident Event A Traffic Event that is entered by an Operator in response to one

of the following types of incidents: Disabled in roadway,
Personal injury, Property damage, Fatality, Debris in roadway,
Vehicle fire, Maintenance, Signal call, Police activities, Off-road
activity, Declaration of emergency, Weather, or Other.

Installable Module A plugable GUI module that provides a specific function, which

when registered with the GUI is called on to initialize itself at the
time of GUI startup and shut down at the time of GUI shut down.

Lane Closure The closure of one or more roadway lanes resulting from a

Traffic Event.

Message Library A collection of stored messages that can be displayed on the

DMS or broadcast on a HAR.

Navigator A Navigator is a GUI window that contains a tree on the left-

hand side and a list on the right hand side. Tree elements
represent groups of objects and the list on the right hand side
represents the objects in the selected group.

Object Discovery A GUI mechanism in which the client periodically asks the

CORBA Trading Service to find objects of those types that are
of interest to the GUI, such as DMS, HAR, Plan etc.

Operations Center A center where one or more users may log in to operate the

CHART II system. Operations centers are assigned responsibility
for shared resources that are controlled by users who are logged
in at that operations center.

Operator A CHART II user that works at an Operations Center.

Organization

An organization is an agency that participates in the CHART II
system and owns one or more Shared Resources.

R1B2 Servers Detailed Design B-4 04/17/01

Plan A collection of plan items that can be added to the response plan

of a traffic event as a group.

Plan Item An action in the system that can be set up in advance to be

activated one or more times in the future. Plan items must be
contained in a plan. Specific types of plan items exist for specific
functionality. A plan item may be copied to a traffic event
response plan and subsequently activated.

Response Plan A collection of response plan items created in response to a

traffic event that can be activated as a group..

Response Plan Item An action in the system that can be set up in response to a traffic

event. Response plan items must be contained in a response plan.
Specific types of response plan items exist for specific
functionality. A response plan item carries out its specific task
when activated

Role A Role is a collection of functional rights that a user may

perform. The roles that pertain to a particular user for a particular
login session are determined when he/she logs into the system.

Safety Message Event A Traffic Event that is entered by an Operator to display and/or

broadcast safety messages.

Service Application A software application that can be configured to run one or more

service application modules and provides them basic services
needed to serve CORBA objects.

Service Application Module A software module that serves a related group of CORBA

objects and can be run within the context of a service
application.

Shared Resource A resource that is owned by an organization. A user may be

granted access to a shared resource owned by an organization
through the functional rights scheme.

SHAZAM A device used to notify the traveling public of the broadcast of a

HAR message.

R1B2 Servers Detailed Design B-5 04/17/01

Sign see DMS

Stored Message A message that may be broadcast on a HAR or displayed on a

DMS.

System Profile Information used to define the configuration of the system.

Properties stored in the system profile apply to all users when
they are logged in.

Token A token or access token is a security blob that encloses

information about a user and the functional rights associated
with the user. All secured CHART2 operations require a token to
be passed to it and based on the functional rights found in a
token a user is allowed or denied access.

Traffic Event A traffic event represents a roadway event that is affecting traffic

conditions and requires action from system operators.

Transferable Shared
Resource

A shared resource that can be transferred from one operations
center to another by a user with the appropriate functional rights.

User A user is somebody who uses the CHART II system. A user can

perform different operations in the system depending upon the
roles they have been granted.

User Profile A set of information used to correctly configure an individual

user’s GUI on startup.

Weather Service Alert
Event

A Traffic Event that is entered by an Operator in response to
National Weather Service advisories.

